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Abstract

Developing AI agents capable of collaborating with previously unseen partners is a
fundamental generalization challenge in multi-agent learning, known as Ad Hoc
Teamwork (AHT). Existing AHT approaches typically adopt a two-stage pipeline,
where first, a fixed population of teammates is generated with the idea that they
should be representative of the teammates that will be seen at deployment time, and
second, an AHT agent is trained to collaborate well with agents in the population.
To date, the research community has focused on designing separate algorithms
for each stage. This separation has led to algorithms that generate teammate
pools with limited coverage of possible behaviors, and that ignore whether the
generated teammates are easy to learn from for the AHT agent. Furthermore,
algorithms for training AHT agents typically treat the set of training teammates as
static, thus attempting to generalize to previously unseen partner agents without
assuming any control over the distribution of training teammates. In this paper,
we present a unified framework for AHT by reformulating the problem as an
open-ended learning process between an ad hoc agent and an adversarial teammate
generator. We introduce ROTATE, a regret-driven, open-ended training algorithm
that alternates between improving the AHT agent and generating teammates that
probe its deficiencies. Extensive experiments across diverse AHT environments
demonstrate that ROTATE significantly outperforms baselines at generalizing to
an unseen set of evaluation teammates, thus establishing a new standard for robust
and generalizable teamwork.

1 Introduction

As the deployment of AI agents in diverse applications becomes more common, it is increasingly
crucial that they can collaborate effectively with previously unseen humans and other AI agents. While
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Figure 1: ROTATE Overview. ROTATE is an open-ended ad hoc teamwork learning framework in which the
AHT agent learns as the set of training teammates expands. The core idea of ROTATE is to improve the AHT
agent and iteratively generate diverse teammates with whom the AHT agent struggles to collaborate, yet not so
adversarial that effective teamwork becomes impossible.

methods for training teams of agents have been explored in cooperative multi-agent reinforcement
learning (CMARL) [18, 43], previous work [53, 40] highlights that CMARL-based agents fail to
perform optimally when collaborating with unfamiliar teammates. Rather than learning strategies
that are only effective against jointly trained teammates, dealing with previously unseen teammates
requires adaptive AI agents that efficiently approximate the optimal strategy for collaborating with
diverse teammates. Methods to train adaptive agents in the context of collaborative tasks have
previously been explored within the literature of ad hoc teamwork (AHT) [6, 50, 34] and zero-shot
coordination (ZSC) [21, 13, 33].

Prior work [34] has often decomposed AHT learning into two stages, consisting of first creating a fixed
set of teammates, and then training an AHT agent using reinforcement learning (RL) approaches,
based on interactions with teammates sampled from the set. Despite relying on neural network
policies, algorithms that train an AHT agent based on interaction with a human-designed set of
heuristic or pretrained agents [38, 64, 40] often struggle to handle novel behaviors outside the
predefined set of teammates [51, 8]. Recent work [33, 9, 41, 42, 46] strengthens the generalization
capabilities of previous methods by substituting the human-designed set of teammates with a set
of teammate policies that are trained to maximize different notions of diversity. One such diversity
notion is adversarial diversity [41, 9], which seeks to generate a set of teams that cooperate well
within the team, but not across teams. However, prior work [14, 46, 10] empirically demonstrates that
adversarial diversity often leads to teammate policies that actively diminish returns when interacting
with agents other than their identified teammate, a phenomenon sometimes called self-sabotage.

This paper addresses two issues that cause existing AHT and ZSC methods to fail to learn policies
that effectively collaborate with some teammates. First, existing methods [38, 64, 40, 41] learn
from sampling teammates from a fixed set containing few teammate policies. Compared to the
vast space of strategies a teammate may adopt, the AHT agent will only be trained to collaborate
optimally with a small set of strategies, while potentially performing poorly against others. Second,
existing methods focus on designing diverse and incompatible teammates [9, 41, 62], whose return-
diminishing tendencies make it challenging for a randomly initialized, RL-based AHT agent to
effectively learn to collaborate with.

In this paper, we present a fresh perspective on AHT, by observing that maximizing the return of an
AHT agent on an unknown set of teammates is equivalent to minimizing its cooperative regret: the
utility gap between the best response to a given teammate, and the AHT agent’s performance with
that teammate. Inspired by the success of regret for designing generally capable agents that efficiently
solve a broad range of tasks [56, 15, 24, 44], we then reformulate the AHT problem as a minimax
game between the AHT agent and a teammate generator. Our problem formulation suggests an open-
ended framework for AHT, that drives a teammate generator to continually discover new teammate
policies, while jointly improving the AHT agent. Building on this theoretical foundation, we propose
a practical algorithm, ROTATE (Fig. 1), which optimizes a regret-based minimax objective for both
players, while maintaining a population of all teammates explored. Key to the success of ROTATE is
a novel and practical per-state regret objective, designed to mitigate the self-sabotage problem that
naturally arises from cooperative regret type objectives. We demonstrate that ROTATE significantly

2



improves the robustness of AHT agents when faced with previously unseen teammates, compared to
a range of baselines on Level-Based Foraging and Overcooked tasks.

This paper makes three main contributions. First, it defines a novel problem formulation for AHT,
enabling open-ended AHT training that continually generates new teammates. Second, it introduces
a novel algorithm, ROTATE, that instantiates the proposed open-ended AHT framework. Third, it
provides empirical evaluations demonstrating that ROTATE significantly improves return against
unseen teammates compared to representative baselines from AHT and open-ended learning.

2 Related Work
Agent Training in AHT & ZSC. The training of adaptive ego agent policies that can near-optimally
collaborate with diverse previously unseen teammates has been explored in AHT [50] & ZSC [21].
Given access to a set of training teammate policies, AHT methods [34] train ego agents to model
teammates [3] by identifying important characteristics of different teammates based on their observed
behavior. These methods then train a model estimating the best-response policy to the encountered
teammate policies based on their inferred characteristics. Recent AHT methods [40, 38, 64, 20, 55]
typically use neural networks trained using reinforcement learning [48, 35]. To further improve AHT
training, several approaches learn a distribution for sampling teammate policies during training based
on maximizing the worst-case returns of trained agents [54] or maximizing regret [17, 11]. As an
alternative to AHT, ZSC designs learning methods promoting near-optimal collaboration between
agents that have not interacted with each other as long as they learn using the same ZSC algorithm.
ZSC methods [21, 22, 13] typically achieve this goal by encouraging the agents to converge towards
the same equilibrium despite being trained independently. These agent training algorithms are a
crucial component of ROTATE, an iterative training procedure that uses AHT training algorithms to
improve an AHT policy based on an interaction with generated teammate policies.

Teammate Generation for AHT & ZSC. Recent work improves existing AHT and ZSC agent
training algorithms by designing a diverse collection of training teammate policies. FCP [51]
generates the pretrained teammate policies by running the same CMARL algorithm across different
seeds. Other work improved FCP by optimizing information-theoretic diversity metrics based on
Jensen-Shannon divergence [33], mutual information [32], or entropy [59, 63], which encourages
each teammate to yield different trajectories or policies. Recent methods [41, 9, 14, 42, 46] enable
the trained AHT agent to learn distinct strategies during training by generating teammate policies
requiring distinct best response policies through the maximization of adversarial diversity metrics,
which strongly resembles ROTATE’s notion of cooperative regret. However, instead of maximizing
the regret of the trained AHT agent like ROTATE, these methods maximize the regret from using a
generated teammate policy to interact with another generated teammate policy. Unlike ROTATE’s
open-ended training process, these methods also only generate a limited and fixed set of teammate
policies once before agent training. Notably, these methods maximize regret only on the initial
state of a collaboration trajectory, leading to sabotaging teammate policies [14, 46] that execute
detrimental actions for cooperation in states that it will not visit in self-play. Learning to collaborate
with sabotaging teammates is difficult, leading to the proposal of heuristics to reduce sabotage in
previous work [14, 46], and a more systematic objective in ROTATE.

Open-Ended Learning (OEL). Our proposed method is heavily influenced by prior work in OEL [28,
52], which explores algorithms that continually design novel tasks to create a generally capable
agent [23, 4]. Many OEL methods in RL [56, 15, 39, 25, 24, 44] focus on the problem of unsupervised
environment design (UED), which aims to improve RL agent generalization across different tasks by
designing and sampling novel environments with different transition and reward functions. Similar
to our method, PAIRED [15] trains a neural network using reinforcement learning to output novel
environment parameters that induce high regret to the trained ego agent. Other methods assume access
to a procedural environment generator, and focus on designing task curators that sample training
environments based on criteria such as the expected returns of different policies [56], TD-Error
induced during learning [25], regret [24], or learnability [44]. In the context of competitive multi-
agent RL, OEL methods seek to generate new opponents for competitive gameplay, often through
self-play [49, 29]. For AHT, Yuan et al. [62] and Yan et al. [60] also proposed open-ended methods
that keep generating novel teammate policies for an AHT agent to learn from. Unlike ROTATE, their
approach to generating teammates either relies on evolutionary methods to generate new teammates
or uses random perturbations of the AHT agent’s policy as the new teammate, making it less efficient
at producing representative samples from the vast teammate policy set.
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3 Background

The interaction between agents in an AHT setting may be modeled as a decentralized, partially
observable Markov decision process (Dec-POMDP) [37]. A Dec-POMDP is characterized by a
9-tuple, ⟨N,S, {Ai}|N |

i=1, P, p0, R, {Ωi}
|N |
i=1, O, γ⟩, where N , S, and γ respectively denote the index

set of agents within an interaction, the state space, and a discount rate in (0, 1). Each interaction
between the AHT agent and its teammates begins from an initial state s0 sampled from an initial state
distribution, p0(s). Denoting the set of all probability distributions over a set X as ∆(X) and the
current timestep as t, a Dec-POMDP assumes that each agent may not perceive the current state, st.
Each agent instead perceives an observation from its observation space, oit ∈ Ωi, sampled from the
observation function, O : S 7→ ∆(Ω1 × · · · × Ω|N |). Each agent i ∈ N then chooses an action at
time t from its action space, ait ∈ Ai, based on a policy, πi(Hi

t), conditioned on its observation-action
history, Hi

t = {oi≤t, ai<t}. The actions selected by each agent are then collectively executed as the

joint action, at = (a1t , . . . , a
|N |
t ). Each agent receives a common scalar reward, rt, based on the

reward function, R : S ×A1 × · · · × A|N | 7→ R. Finally, a new state st+1, is sampled according to
the environment transition function, P : S ×A1 × · · · × A|N | 7→ ∆(S). In this paper, the notation
πego refers to a trained AHT agent policy, or ego agent, while π−i refers to the N − 1 policies of the
AHT agent’s teammates. Importantly, we assume that teammates choose their actions only based on
the current state. At the same time, the AHT agent selects its actions based on its state-action history,
which is necessary to allow the AHT agent to distinguish between different types of teammates
effectively.

4 Ad Hoc Teamwork Problem Formulation

Ad Hoc Teamwork (AHT) methods aim to train an adaptive AHT policy that an ego agent can
follow to achieve maximal return when collaborating with an unknown set of evaluation teammates.
Using the Dec-POMDP formulation to model the interaction between agents, this section formalizes
the objective of AHT. While the most general AHT setting considers a possibly varying number
of ego agents and teammates within an interaction [55, 40], this formalization addresses the more
straightforward case where there is only a single ego agent within a team.

Let π−i denote a joint teammate policy controlling the N − 1 non-ego agents during collaboration.
Denote the returns of an ego agent following πego to collaborate with teammates controlled by π−i,
starting from state s, as:

V (s|π−i, πego) = E aego
t ∼πego,

a−i
t ∼π−i,P,O

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣s0 = s

]
. (1)

Let Πeval denote the unknown set of joint teammate policies encountered during evaluation, which
is assumed to only contain competent and non-adversarial policies, as defined in the seminal work
of Stone et al. [50]. Let ψeval(Πeval) denote the probability distribution over Πeval defining how
teammates are sampled during evaluation. An ego agent policy, πego, is evaluated by its ability
to maximize the expected returns when collaborating with joint teammate policies sampled from
ψeval(Πeval), which is formalized as:

max
πego

V (ψeval,Πeval, πego) = max
πego

Eπ−i∼ψeval(Πeval),s0∼p0
[
V (s0|π−i, πego)

]
. (2)

An optimal πego that maximizes Eq. 2 closely approximates the best response policy performance
when collaborating with π−i ∈ Πeval. Given a teammate policy π−i, BR(π−i) is a best response
policy to π−i if and only the team policy formed by π−i and BR(π−i) achieves maximal return:

BR(π−i) := max
π

Es∼p0
[
V (s|π, π−i)

]
. (3)

In some cases, an AHT algorithm can directly estimate this optimal policy by using Πeval to train an
ego agent policy that maximizes V (ψeval,Πeval, πego) when Πeval is known.2 However, most AHT

2In the context of reinforcement-learning-based AHT algorithms, “known" means that an AHT algorithm
has unlimited sampling access to the teammate policies.
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methods address the more challenging case where Πeval is unknown, which is the setting that this
paper adopts as well. While our methods assume no knowledge of Πeval during training, we follow
standard practice [38, 40, 64, 55] by manually designing a diverse Πeval for evaluation purposes, as
we later describe in Section 7.

When Πeval is unknown, AHT algorithms [34] either assume access to a training set of teammate
policies, Πtrain, or generate such a set. An expert’s domain knowledge about the characteristics of
Πeval may be leveraged to construct a Πtrain similar to Πeval. Once the set of training teammates has
been formed, current AHT algorithms use reinforcement learning to discover an ego agent policy
based on interactions with joint policies sampled from Πtrain. While the precise training objective
varies with the AHT algorithm, a common objective is to maximize the expected return during
interactions with joint policies sampled uniformly from Πtrain:

π∗,ego(Πtrain) = argmax
πego

Eπ−i∼U(Πtrain),s0∼p0
[
V (s0|π−i, πego)

]
. (4)

Naturally, even an optimal ego agent policy, π∗,ego(Πtrain), may not be optimal with respect to Πeval

and ψeval, due to the potential distribution shift caused by differences between the training and
evaluation objectives.

5 An Open-Ended Learning Perspective on Ad Hoc Teamwork

In this section, we outline the general components of our open-ended framework to train ego agents
that are performant at collaborating with holdout teammate policies, despite not knowing Πeval and
ψeval during training. We first argue for minimizing worst-case cooperative regret towards training ego
agent policies that maximize Eq. 2 when Πeval is unknown. We then finish the section by introducing
two necessary procedures in an iterative process to minimize worst-case regret.

We define the cooperative regret of an ego agent policy πego when interacting with some joint
teammate policy π−i from a starting state s as:

CR(πego, π−i, s) = V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego) . (5)

Any optimal AHT policy that maximizes Eq. 2 must also minimize the expected regret over joint
teammate policies sampled based on ψeval(Πeval), which we formally express as:

CR(ψeval,Πeval, πego) = Eπ−i∼ψeval(Πeval),s0∼p0
[
CR((πego, π−i, s0)

]
. (6)

This property is a consequence of V
(
s|π−i, BR(π−i)

)
being independent of πego for any π−i and s,

leaving maximizing expected regret equivalent to minimizing the negative expected returns when
collaborating with joint teammate policies sampled from ψeval(Πeval).

Without knowing Πeval to optimize CR(ψeval,Πeval, πego), we instead take inspiration from approaches
in UED [56, 15], and propose optimizing πego to minimize the worst-case regret that could be induced
by any teammate policy π−i:

min
πego

max
π−i∈Π−i

Es0∼p0
[
CR(πego, π−i, s0)

]
, (7)

where we re-emphasize that Π−i denotes the set of all competent and non-adversarial [50] joint
teammate policies. Limiting the considered joint policies is important since teams that always perform
poorly against any good-faith πego are unlikely to be encountered in coordination scenarios and may
induce unnecessary learning challenges for RL-based AHT learning algorithms.

Finding πego that achieves zero worst-case regret is equivalent to finding an ego agent that achieves
the best-response return with any joint teammate policy π−i. If such a πego exists, then this AHT
agent would maximize Eq. 2 for any ψeval and Πeval—however, existence is not guaranteed [30]. In
practice, we are content with minimizing the worst-case regret. While minimizing worst-case regret
still applies to AHT problems with more than one teammate at a time, note that we limit our method
for optimizing Eq. 7 and our experiments to two-player, fully observable AHT games.

Algorithm 1 in the Appendix outlines a framework to train a πego that minimizes worst-case regret.
The algorithm resembles coordinate ascent algorithms [16], which alternate between optimizing for
π−i and πego for T iterations, while assuming the other is fixed. We call a phase where we fix πego and
update π−i to maximize the ego agent’s regret, the teammate generation phase. Meanwhile, assuming
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that π−i is fixed, the ego agent update phase updates πego to minimize regret. This optimization
algorithm is an open-ended training method that continually generates novel teammate policies whose
interaction with the ego agent provides the learning experience to improve πego. Next, we detail the
learning process during these two phases.

6 ROTATE: Regret-driven Open-ended Training for Ad hoc TEamwork

This section presents our regret-driven, open-ended AHT algorithm, ROTATE. We first describe
the teammate generation procedure in Section 6.1, particularly focusing on motivating the objective
we used to generate teammate policies. Next, we provide details of the ego agent update method in
Section 6.2. The Appendix provides ROTATE’s pseudocode and additional implementation details.

6.1 ROTATE Teammate Generator

The teammate generator produces teammate policies that maximize the regret of πego. By updating
πego to minimize its regret against the regret-maximizing teammate policy, we aim to decrease the
worst-case cooperative regret of πego (Eq. 7). Since measuring cooperative regret requires estimating
the performance of a generated π−i when collaborating with BR(π−i), we jointly train policies for
π−i and an approximation of BR(π−i) using the Proximal Policy Optimization (PPO) algorithm [48].

Before detailing our alternative objectives for training π−i, we first introduce the different interactions
that provide the experience to train π−i. Let self-play (SP) refer to teammate and best response
interactions, cross-play (XP) refer to teammate and ego agent interactions, and cross-play continued
by self-play (SXP) refer to an interaction where the teammate is first interacting with the ego agent,
but switches at a random timestep t to interacting with the best response. We train π−i based on
states sampled from SP, XP, and SXP. Let d(π1, π2; p0) denote the state visitation distribution when
π1 and π2 interact based on a starting state distribution p0. To denote the state visitation distributions
for these interactions, we use the following shorthand:

pSP := d
(
π−i,BR(π−i); p0

)
, pXP := d

(
π−i, πego; p0

)
, pSXP := d

(
π−i,BR(π−i); pXP

)
. (8)

This section considers two teammate policy generation objectives that differ in the data source used
to optimize the objective, and are illustrated in Fig. 2.

XP

SP

Per-Trajectory Regret

XP state SP stateInitial State

Self Play (SP) Cross Play (XP) Self Play from Cross Play States (SXP)

Init. State Dist.

Per-State Regret

Objective = Regret(  )

XP

SP

SXP

V = Expected Return

maximize VSXP(  ) 

maximize Regret(  )

maximize VSP(  )

Objective = Regret(  ) + VSP(  ) + VSXP(  )

maximize VSP(  )

minimize VXP(  )

Figure 2: Per-trajectory regret vs per-state regret.

The first objective generates π−i based on
maximizing per-trajectory regret of πego,
which only maximizes regret of trajectories
starting from the initial state distribution:

max
π−i

Es0∼p0
[
CR(πego, π−i, s0)

]
. (9)

From the definition of CR (Eq. 5), optimiz-
ing per-trajectory regret amounts to max-
imizing the expected returns of SP inter-
actions from the initial state distribution
p0, Es∼p0

[
V (s|π−i,BR(π−i))

]
, and min-

imizing the expected returns of XP inter-
actions from p0, Es∼p0

[
V (s|π−i, πego)

]
.

This objective resembles the adversarial di-
versity metric optimized in prior teammate
generation work [9, 41, 14].

While the per-trajectory regret is the same as the regret objective optimized in Eq. 7, optimizing it
naively leads to generating teammates with undesirable self-sabotage behaviors. To minimize the
expected returns from cross-play interaction, self-sabotaging policies choose actions leading to low
returns in states outside the support of pSP [14], including the states visited during the collaboration
between π−i and πego, s ∼ pXP. The lack of high reward signals makes it challenging for the ego
agent to learn to collaborate with π−i using reinforcement learning.
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The second objective discourages the emergence of self-sabotaging policies by optimizing a per-state
regret objective defined as:
max
π−i

(Es∼pXP [CR(πego, π−i, s)] + Es∼pSXP [V (s|π−i,BR(π−i))] + Es∼pSP [V (s|π−i,BR(π−i))]).

(10)

The first term in Expr. 10 encourages discovering π−i for which the ego agent policy has a high room
for improvement. Meanwhile, the second term trains π−i to act as if it interacts with its best response
policy, even from starting states encountered during XP interactions. This encourages π−i to act in
good faith by having at least a partner policy that can collaborate well with π−i when starting from
states in pXP. Finally, the last term encourages π−i to cooperate with its best response. This enables
consistently generating competent teammates during open-ended learning, which is essential as stated
in Section 5.

While obtaining states from pSP and pXP is straightforward, states from pSXP can be tricky to collect
depending on the implementation of an AHT environment. If an environment supports resetting to
any arbitrary state, then states encountered during XP interaction can be stored and used as the initial
state for SP interactions. Otherwise, we can use a data collection strategy that first samples a random
timestep t, runs XP interaction until timestep t, and finally switches to SP interaction afterwards [46].
Only data gathered after timestep t should be used to compute objectives based on pSXP.

6.2 ROTATE Ego Agent Update

At each iteration, ROTATE creates a teammate that attempts to discover cooperative weaknesses
of the previous iteration’s ego agent, by maximizing its per-state regret. To allow the ROTATE
ego agent to improve its robustness over time and reduce the possibility that it forgets how to cope
with previously generated teammates, the ROTATE ego agent maintains a population buffer of
generated teammates. During the ego agent update phase of each iteration, the ROTATE ego agent is
trained using PPO [48] against teammates sampled uniformly from the population buffer. We find
experimentally that for the ego agent to learn effectively against the nonstationary population buffer,
it is important to define a lower entropy coefficient and learning rate than when training the teammate
and BR agents (typically in the range of 1× 10−4 for the entropy coefficient and 1× 10−5 for the
learning rate).

7 Experimental Results

This section presents the empirical evaluation of ROTATE compared to baseline methods, across six
cooperative tasks. The main research questions are:

• RQ1: Does ROTATE better generalize to unseen teammates, compared to baseline methods from
the AHT and UED literature? (Yes)

• RQ2: Does per-state regret improve over trajectory level regret and mixed-play regret? (Yes)
• RQ3: Is the population buffer necessary for ROTATE to learn well? (Yes)
• RQ4: Is the population generated by ROTATE useful for training an independent ego agent? (Yes)

Supplemental results and analysis are provided in the Appendix. The code for the experiments in this
paper is available at https://github.com/carolinewang01/rotate.

7.1 Experimental Setup

This section describes the experimental setting, including tasks, baselines, construction of the
evaluation set, and the evaluation metric.

Tasks ROTATE is evaluated on six tasks: Level-Based Foraging (LBF) [2], and the five classic
layouts from the Overcooked suite [8]: Cramped Room (CR), Asymmetric Advantages (AA),
Counter Circuit (CC), Coordination Ring (CoR), and Forced Coordination (FC). All six tasks are fully
cooperative benchmark tasks with a variety of possible coordination conventions, and are commonly
used within the AHT literature [2, 12, 38]. In our LBF configuration, two agents must navigate to
three apples that are randomly placed within a gridworld, and cooperate to pick up the apples. In
all Overcooked tasks, two agents collaborate in a gridworld kitchen to cook and deliver onion soup,
where the main difference between tasks is the kitchen layout. All experiments were implemented
with JAX [7], so we use JAX re-implementations of the LBF and Overcooked tasks [5, 45].
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Baselines As our method is most closely related to methods from unsupervised environment
design (UED) and teammate generation, we compare against two UED methods adapted for AHT
(PAIRED [15], Minimax Return [36, 54]) and three teammate generation methods (Fictitious Co-
Play [51], BRDiv [41], CoMeDi [46]). While curator-based methods such as PLR [24, 25] are popular
in UED, we do not compare against them as they are orthogonal to ROTATE [17, 54, 11]. Similarly,
we do not compare against AHT algorithms that propose techniques to improve ego learning [3].
Each baseline is described in App. B, along with implementation details. For fair comparison, all
open-ended and UED methods were trained for a similar number of environment interactions, or until
best performance on the evaluation set. All teammate generation approaches were ran using a similar
number of environment interactions as their original implementations, as scaling them up to use a
similar number of steps as the open-ended approaches proved challenging (see discussion in App. B).
All results are reported with three trials.

Construction of Πeval We wish to evaluate all methods on as diverse a set of evaluation teammates
as practically feasible, while ensuring that each teammate acts in “good faith". To achieve this goal,
for each task, we construct 9 to 13 evaluation teammates using three methods: IPPO with varied
seeds and reward shaping, BRDiv, and manually programmed heuristic agents. Full descriptions of
the teammate generation procedure and all teammates in Πeval are provided in App. F.

Evaluation Metric Ego agent policies are evaluated with each teammate in Πeval for 64 evaluation
episodes, where the return is computed for each episode, and normalized using a lower return bound
of zero and an estimated best response return as the upper bound for each teammate. Performance
of a method on Πeval is reported as the normalized mean return with bootstrapped 95% confidence
intervals, computed via the rliable library [1]. Our normalized return metric is similar to the
BRProx metric recommended by Wang et al. [57]. Details about the normalization procedure and
specific bounds for each teammate are reported in the App. F.

7.2 Results

This section presents empirical analysis addressing the four research questions introduced at the
beginning of Section 7. Supplemental analysis considering alternative regret-based objectives,
breaking down performance by evaluation teammate type, and learning curves for all variants of
ROTATE are provided in App. C.

RQ1: Does ROTATE better generalize to unseen teammates compared to baselines? (Yes) To
evaluate the generalization capabilities of ROTATE, we compare its performance against baselines
on Πeval. Fig. 3a compares the normalized mean returns for ROTATE and all baseline methods across
the six tasks. The results show that ROTATE significantly outperforms all baselines on 5/6 tasks.

Among the baseline methods, the next best performing baselines are CoMeDi and FCP. We attribute
CoMeDi’s strong performance to the resemblance of its mixed-play objective to our per-state regret
objective, which we discuss in App. C.1. FCP’s performance may be attributed to the large number
of partners that FCP was trained with (approximately 100 teammates per task). We found that FCP
tends to perform especially well with the IPPO policies in Πeval, likely because the IPPO evaluation
teammates are in-distribution for the distribution of teammates constructed by FCP.

We also observe that Minimax Return performs surprisingly well in AA, which we hypothesize is
due to AA’s particular characteristics. In AA, agents operate in separated kitchen halves, possessing
all necessary resources for individual task completion, with shared access to pots on the dividing
counter being the only shared resource. Consequently, a fully adversarial partner has limited methods
to sabotage the ego agent.3 However, on LBF and FC, where coordination is crucial to obtain positive
return on the tasks, Minimax Return is the worst performing baseline.

BRDiv and PAIRED exhibit comparatively poor performance, which may be partially attributed
to their teammate generation objectives that resemble per-trajectory regret. As we find for RQ2,
per-state regret outperforms per-trajectory regret within the ROTATE framework. Furthermore,
PAIRED’s update structure involves a lockstep training process for the teammate generator, best

3Agent teams may still achieve higher returns through effective coordination on AA, due to layout asymmetry.
In the “left" kitchen, the delivery zone is adjacent to the pots while the onions are farther, while in the “right"
kitchen, the opposite is true. Thus, an optimal team consists of the “left" agent delivering finished soup, and the
“right" agent placing onions in the pots.
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Figure 3: (Left) ROTATE outperforms all baseline methods across all tasks in evaluation return. (Right)
ROTATE with per-state regret (ours) outperforms ROTATE with per-trajectory regret in 5/6 tasks. 95%
bootstrapped CI’s are shown, computed across all evaluation teammates and trials.

response, and ego agent. This synchronized training may hinder the natural emergence of robust
conventions that are crucial for effective AHT.

RQ2: Does per-state regret improve over trajectory regret? (Yes) As discussed in Section
6, we propose that teammates should maximize per-state regret rather than per-trajectory regret to
mitigate the emergence of self-sabotage behaviors. Here, we compare ROTATE where the teammate
maximizes per-state regret (ours) to ROTATE where the teammate maximizes per-trajectory regret.
All configurations other than the teammate’s policy objective are kept identical, including the data
used to train the teammate value functions. Fig. 3b shows that ROTATE with per-state regret
outperforms ROTATE with per-trajectory regret on all tasks except AA, confirming the superiority
of per-state regret. As discussed in RQ1, we observe that AA is a layout where an ego agent is
less susceptible to sabotage, due to the separated kitchen layout. App. C.2 presents additional
experiments testing ROTATE with CoMeDi-style mixed-play rollouts, and alternative methods to
compute per-state regret—ultimately finding that ROTATE outperforms all variations.

RQ3: Is the population buffer necessary for ROTATE to learn well? (Yes) We hypothesize
that collecting all previously generated teammates in a population buffer helps the ROTATE agent
improve in robustness against all previously discovered conventions. On the other hand, if there is no
population buffer, then it becomes possible for the ROTATE ego agent to forget how to collaborate
with teammate seen at earlier iterations of open-ended learning [27], which creates the possibility
that the ego agent and teammate generator oscillates between conventions. As shown in Fig. 5a,
ROTATE without the population buffer attains lower evaluation returns than the full ROTATE
method on all tasks except for AA, thus supporting the hypothesis that the population buffer improves
ego agent learning. As discussed in RQ1, AA is a unique layout where agents can complete the task
independently, even in the presence of an adversarial partner. As a corollary, there are few meaningful
cooperative conventions that can be discovered, and no scenarios where convention mismatch leads
to zero return (unlike LBF and FC).

RQ4: Is the population generated by ROTATE useful for training an independent ego agent?
(Yes) Two-stage AHT algorithms first generate a population of teammates, and next train an ego
agent against the population. Although ROTATE’s teammate generation mechanism relies on the
learning process of a particular ego agent, here, we investigate whether the population generated
by ROTATE is useful for training independently generated ego agents. Fig. 5b (presented in
the Appendix) compares the mean evaluation returns of the ROTATE ego agent against the mean
evaluation returns of an independently trained ego agent that was trained using the same configuration
as ROTATE. In 3/6 tasks, the ROTATE ego agent outperforms the independently trained ego agent,
while in two tasks, the two ego agents perform similarly (LBF and FC). Thus, the experiment suggests
that the ROTATE population is a useful population of teammates even independent of the particular
ego agent generated. The strong performance of the independently trained ego agent is unsurprising
given that it has two advantages over the ROTATE ego agent. First, the independently trained ego
agent faces a stationary distribution of training teammates compared to ROTATE, which faces a
nonstationary distribution caused by the population growing over learning iterations. Second, the
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independently trained ego agent interacts with all teammates uniformly throughout training, while the
ROTATE ego agent only trains against earlier teammates for more iterations than later teammates.

8 Discussion and Conclusion

This paper reformulates the AHT problem as an open-ended learning problem and introduces
ROTATE, a regret-driven algorithm. ROTATE iteratively alternates between improving an AHT agent
and generating challenging yet cooperative teammates by optimizing a per-state regret objective
designed to discover teammates that exploit cooperative vulnerabilities without encouraging self-
sabotage. Empirical evaluations across six AHT tasks demonstrate that ROTATE significantly
enhances the generalization capabilities of AHT agents when faced with previously unseen teammates,
outperforming a range of baselines from both AHT and UED.

The current work has several limitations that future work may address. First, while this paper provides
intuitive justification and strong empirical evidence for the efficacy of the per-state regret objective,
it does not provide theoretical analysis. An exciting line of follow-up work is to more formally
define the concept of self-sabotage in cooperative MARL and theoretically analyze the properties
of the regret objectives proposed here. Second, the paper only studies ROTATE on two-agent,
fully observable, and fully cooperative scenarios. Finally, this work has focused on the teammate
generation phase of open-ended AHT. Future work might explore ego agent training methods that
better handle the nonstationarity induced by open-ended teammate generation.
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Appendix

A Algorithms

Algorithm 1 Open-Ended Ad Hoc Teamwork

Require:
Environment, Env.
Total of training iterations, T iter.
Initial ego agent policy parameters, θego.

1: Bπ ← ⟨⟩ ▷ Init teammate policy parameter buffer.
2: for j = 1, 2, . . . , T iter do
3: Bnew

π ← TeammateGenerator(Env, θego, Bπ)
4: θego ← EgoUpdate(Env, θego, Bnew

π )
5: Bπ ← Bnew

π
6: end for
7: Return θego

A.1 Framework for Open Ended Ad Hoc Teamwork

Section 5 described an open-ended training framework for training an ego agent that can effectively
collaborate with previously unseen teammates. We further detail this general open-ended framework
in Algorithm 1. In Line 3, a TeammateGenerator function determines a buffer of teammate
policy parameters, Bnew

π . The teammate generator function considers the ego agent’s current policy
parameters, θego, and the previous buffer of teammate policy parameters, Bnew. Ideally, the teammate
generation function generates and samples teammates that induce learning challenges to πego. In
Line 4, an EgoUpdate function specifies a procedure that updates the ego agent’s policy parameters
based on the Bnew

π designed by the teammate generator. Pseudocode for ROTATE, which follows the
open-ended framework specified by Algorithm 1, is presented in the following section.

A.2 ROTATE Algorithm

ROTATE’s teammate generation algorithm is detailed in Algorithm 2. As described in Section 6.1,
this teammate generation algorithm jointly trains the parameters of a teammate policy and an estimate
of its best response (BR) policy, based on a provided ego agent policy. The parameters of the teammate
and BR policies, θ−i and θBR, are initialized in Line 1. The parameters of the BR critic network, σBR,
are initialized in Line 2, while those for the teammate, σ−i,BR and σ−i,ego, are initialized in Line 3.
Note that the teammate maintains two critics, for separately estimating returns when interacting with
the BR and ego agent policies.

The training of the teammate and BR policies is based on the SP, XP, and SXP interaction data
gathered in Lines 5 to 7, which we previously motivated and described in Section 6.1. Recall that an
SXP interaction require resetting an environment to start from an available XP state. Since resetting
from all available XP states for SXP interaction is impractical, ROTATE samples from XP states to
obtain start states for SXP interactions. Experiences from SP, XP, and SXP interaction are stored in
buffers DSP, DXP, DSXP in the form of a collection of tuples, D = ⟨(sk, ak, rk, s′k)⟩

|D|
k=1. Lines 11 to

21 of Algorithm 2 then highlight how we use the stored experiences to compute loss functions that
the trained models optimize.

Lines 11 and 12 describe how the teammate and BR policies are trained to mutually maximize
returns when interacting with each other during SP and SXP interactions. Both lines call the
POL_LOSS_ADV_TARG function, which receives (θ, θold, σold, D, ϵ) as input to evaluate the
following, standard PPO-clip loss function that encourages return maximization and sufficient
exploration:

E
(s,a,r,s′)∈D

−min
(
πθ(a|s)
πθold(a|s)

A, clip
(
πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
A

)
︸ ︷︷ ︸

PPO Clip Loss

+πθ(a|s)log (πθ(a|s))︸ ︷︷ ︸
Entropy Loss

 ,
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Algorithm 2 ROTATE TeammateGenerator Function

Require:
Environment, Env.
Ego agent policy, πθego .
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs.

1: θ−i, θBR ← RandomInit(π), RandomInit(π)
2: σBR ← RandomInit(V )

3: σ−i,BR, σ−i,ego ← RandomInit(V ), RandomInit(V ) ▷ Init teammate and BR parameters
4: for tupdate = 1, 2, . . . , Nupdates do
5: DSP, DXP ← Interact(πθBR , πθ−i , pEnv

0 ), Interact(πθego , πθ−i , pEnv
0 )

6: sXP ← SampleStates(DXP) ▷ Sample XP states
7: DSXP ← Interact(πθBR , πθ−i ,U(sXP)) ▷ Gather SP, XP, and SXP data
8: θBR

old , θ
−i
old ← θBR, θ−i

9: σBR
old , σ

−i,BR
old , σ−i,ego

old ← σBR, σ−i,BR, σ−i,ego ▷ Store old model parameters.
10: for kupdate = 1, 2, . . . , Nepochs do
11: Lppo-clip(θ

BR)← POL_LOSS_ADV_TARG
(
θBRθBR

old , σ
BR
old , DSP ∪DSXP, ϵ

)
12: Lppo-clip(θ

−i)← POL_LOSS_ADV_TARG
(
θ−i, θ−iold , σ

−i,BR
old , DSP ∪DSXP, ϵ

)
13: Lreg(θ

−i)← POL_LOSS_REG_TARG
(
θ−i, θ−iold , σ

−i,BR
old , σ−i,ego

old , DXP, ϵ
)

14: LV (σ
BR)← VAL_LOSS(σBR, σBR

old , DSP ∪DSXP)

15: LV (σ
−i,BR)← VAL_LOSS

(
σ−i,BR, σ−i,BR

old , DSP ∪DSXP

)
16: LV (σ

−i,ego)← VAL_LOSS
(
σ−i,ego, σ−i,ego

old , DXP

)
17: θBR ← GradDesc(θBR,∇θBRLppo-clip(θ

BR))

18: θ−i ← GradDesc
(
θ−i,∇θ−i

(
Lppo-clip(θ

−i) + Lreg(θ
−i)

))
▷ Update policies

19: σBR ← GradDesc(σBR,∇σBRLV (σ
BR))

20: σ−i,BR ← GradDesc(σ−i,BR,∇σ−i,BRLV (σ
−i,BR))

21: σ−i,ego ← GradDesc(σ−i,ego,∇σ−i,egoLV (σ
−i,ego)) ▷ Update critics.

22: end for
23: end for
24: Bπ ← Bπ ∪ ⟨θ−i⟩ ▷ Add generated teammate policy parameter
25: Return Bπ

where A denotes the advantage function. Our implementation of ROTATE uses an estimate of
the advantage function obtained via the Generalized Advantage Estimation (GAE) algorithm [47],
AGAE
σold

. Meanwhile, Line 13 shows how the teammate policy is trained to maximize the ego agent’s
regret based on experiences from XP interaction. The POL_LOSS_REG_TARG function that
computes a loss function that encourages the maximization of regret is generally the same as the
POL_LOSS_ADV_TARG function except for its replacement of the advantage function, A, with a
regret-based target function defined below:

Areg = Vσ−i,BR
old

(s)︸ ︷︷ ︸
≈V (s|π−i, BR(π−i))

− (r + γVσ−i,ego
old

(s′))︸ ︷︷ ︸
≈V (s|π−i,πego)

. (11)

Rather than optimizing a regret function that requires explicitly computing the return-to-go for SP
and XP interaction starting from state s, POL_LOSS_REG_TARG estimates the XP return via
a 1-step bootstrapped return using the teammate critic parameterized by σ−i,BR. Similarly, the SP
return is estimated using the teammate critic network parameterized by σ−i,ego. This results in a
regret optimization method that uses the log-derivative trick to optimize objective functions [58, 19].
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Algorithm 3 ROTATE EgoUpdate Function

Require:
Environment, Env.
Ego agent policy parameters, θego.
Current teammate policy parameter buffer, Bπ .
Number of updates, Nupdates.
PPO clipping parameter, ϵ.
PPO update epochs, Nepochs

1: σego ← Init(V ) ▷ Init params of the critic networks of πego

2: for tupdate = 1, 2, . . . , Nupdates do
3: θ−i ∼ U(Bπ) ▷ Sample teammate parameters uniformly
4: D ← Interact(πθ−i , πθego , pEnv

0 )
5: θego

old , σ
ego
old ← θego, σego

6: for kupdate ∈ {1, 2, . . . , Nepochs} do
7: Lπ(θ

ego)← EGO_POL_LOSS
(
θego, θego

old , σ
ego
old , D, ϵ

)
▷ Compute policy loss

8: LV (σ
ego)← EGO_VAL_LOSS

(
σego, σego

old , D, ϵ
)

▷ Compute critic loss
9: θego ← GradDesc(θego,∇θegoLπ(θ

ego)) ▷ Update policy
10: σego ← GradDesc(σego,∇σegoLV (σ

ego)) ▷ Update critic
11: end for
12: end for
13: Return θego

The ROTATE regret estimation method and alternative approaches to maximize regret are further
discussed in App. C.2.

Lines 14 to 16 then detail how we train critic networks that measure returns from the interaction
between the generated teammate policy and its best response or ego agent policy. We specifically call
the VAL_LOSS function that receives (σ, σold, D) to compute the standard mean squared Bellman
error (MSBE) loss, defined as:

E
(s,a,r′,s′)∈D

[(
Vσ(s)− V targ

σold
(s)

)2]
, (12)

where V targ
σold (s) := AGAE

σold
− Vσold(s) is the target value estimate.

The previously defined loss functions can be minimized using any gradient descent-based optimization
technique, as we indicate in Lines 17 to 21. In practice, our implementation uses the ADAM
optimization technique [26]. At the end of this teammate generation process, Lines 24 and 25 indicate
how the generated teammate policy parameter is added to a storage buffer, which is subsequently
uniformly sampled to provide teammate policies for ego agent training.

The ego agent policy’s training process proceeds according to Algorithm 3. Line 3 illustrates how
ROTATE creates different teammate policies by uniformly sampling model parameters from the
Bπ resulting from the teammate generation process. Using the experience collaborating with the
sampled policies outlined in Line 4, the ego agent’s policy parameters are updated to maximize
its returns via PPO in Line 7. The only difference between the EGO_POL_LOSS function and
POL_LOSS_ADV_TARG function in Algorithm 2 is the input used to compute the loss function.
Unlike in the EGO_POL_LOSS function, we assume that the input dataset, D, stores the historical
sequence of observed states and executed actions, h, rather than states. Likewise, we assume that
the only difference between the VAL_LOSS and EGO_VAL_LOSS function is that the latter stores
the observation-action history rather than states (Line 8). Like recent AHT learning algorithms [64,
40, 38], πego and V ego are conditioned on the ego agent’s observation-action history to facilitate an
adaptive πego through an improved characterization of teammates’ policies. The history-conditioned
ego architecture and other practical implementation details are described in App. E. Finally, the ego
agent update function returns the updated ego agent policy parameters, which are provided as part of
the inputs for the next call to ROTATE’s teammate generation function.
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B Baselines Overview

The main paper compares ROTATE to five baselines: PAIRED, Minimax Return, FCP, BRDiv, and
CoMeDi. Each baseline is briefly described below, followed by a discussion of the computational
complexity of teammate generation baselines compared to ROTATE, and a discussion of the relation-
ship of Mixed Play (MP) with per-state and per-trajectory regret. A discussion of implementation
details can be found in App. E.

PAIRED [15]: A UED algorithm where a regret-maximizing“adversary" agent proposes environ-
ment variations that an allied antagonist achieves high returns on, but a protagonist agent receives
low returns on. The algorithm is directly applicable to AHT by defining a teammate generator for the
role of the adversary, a best response agent to the generated teammate for the role of the antagonist,
and an ego agent for the role of the protagonist.

Minimax Return [36, 54]: A common baseline in the UED literature, with origins in robust
reinforcement learning, where the objective is minimax return. Prior works in AHT have proposed
generating a curriculum of teammates according to this objective. Translated to our open-ended
learning setting, the teammate generator creates teammates that minimize the ego agent’s return,
while the ego agent maximizes return.

Fictitious Co-Play [51]: A two-stage AHT algorithm where a pool of teammates is generated by
running IPPO [61] with varying seeds, and saving multiple checkpoints to the pool. The ego agent is
an IPPO agent that is trained against the pool.

BRDiv [41]: A two-stage AHT algorithm where a population of “confederate" and best-response
agent pairs is generated, and an ego agent is trained against the confederates. BRDiv maintains a
cross-play matrix containing the returns for all confederate and best-response pairs. The diagonal
returns (self-play) are maximized, while the off-diagonal returns (cross-play) are minimized. BRDiv
and LIPO [9] share a similar objective, where the main differences are: (1) If xp_weight denotes
the weight on the XP return, then BRDiv requires that the coefficient on the SP return is always
1+2∗xp_weight, and (2) LIPO introduces a secondary diversity metric based on mutual information,
and (3) LIPO assumes that agents within a team (i.e., a confederate-BR pair) share parameters.

CoMeDi [46]: CoMeDi is a two-stage AHT algorithm. In the first stage, a population of teammates
is generated, and in the second stage, an ego agent is trained against the teammate population. The
teammate generation stage trains teammate policies one at a time, where the nth teammate policy is
trained to maximize its SP return, minimize its XP return with the previously generated teammate (i.e.
from among teammates 1, · · · , n− 1) that it best collaborates with, and maximizes its “mixed-play"
(MP) return. The relationship between the regret objectives described in Section 6 and MP is further
discussed in App. C.1.

B.1 Computational Complexity of ROTATE versus Teammate Generation Baselines

The computational complexity of ROTATE is compared with that of the teammate generation
baselines, in terms of the population size and the number of objective updates. In the following, n
denotes the population size, while T indicates the number of updates needed to train an individual
population member. The precise meaning of n and T might vary with the algorithm, but is made
clear in each description.

FCP: Let T denote the number of RL updates needed to train each IPPO team and let n denote the
number of teams trained by FCP. Then, the computational complexity of FCP is O(nT ).

BRDiV/LIPO: Both BRDiv [41] and LIPO [9] require sampling trajectories from each pair of
agents in the population, for each update. Thus, if the total number of updates is T and the population
size is n, then the algorithm’s time complexity is O(n2T ). Due to the quadratic complexity in n,
BRDiv and LIPO are typically run with smaller population sizes, with n < 10 for all non-matrix game
tasks in both original papers.
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CoMeDi: Recall that CoMeDi trains population members one at a time, such that each agent is
distinct from the previously discovered teammates in the population. This necessitates performing
evaluation rollouts of the currently trained agent against all previously generated teammates at each
RL update step. Let T be the number of RL updates required to train the ith agent to convergence,
and let n denote the population size. Then CoMeDi’s time complexity is O(n2T )—making it scale
quadratically in n, similar to BRDiv and LIPO.

ROTATE: In ROTATE, a new teammate is trained to convergence for each iteration of open-ended
learning. Thus, the number of open-ended learning iterations is equal to the population size n, where
within each iteration, there are O(T ) RL updates performed. Therefore, the complexity of ROTATE
is O(nT ), meaning that our method scales linearly in the population size n.

C Supplemental Results

This section presents various supplemental results. First, we describe CoMeDi’s mixed-play mech-
anism in the context of ROTATE’s per-state regret. Second, we discuss alternative estimators for
ROTATE per-state regret. Third, we present experiments comparing ROTATE to a variant with
CoMeDi-style mixed-play return maximization, and a variant using the alternative regret estimation
strategy. Next, we present and describe radar charts breaking down the performance of ROTATE on
all six tasks presented in the main paper. Finally, we present the learning curves for all variants of
ROTATE that are tested in this paper.

C.1 Discussion of CoMeDi and Mixed Play

As previously described in App. B, CoMeDi [46] is a two-stage teammate generation AHT algo-
rithm, whose teammate generation process trains one teammate per iteration, with an objective that
encourages the new teammates to be distinct from previously discovered teammates.

CoMeDi adds trained teammates policies to a teammate policy buffer, Πtrain. Each iteration begins by
identifying the teammate policy that is most compatible with the currently trained teammate π−i, out
of all previously generated policies:

πcomp = argmax
π−j∈Πtrain

Es∼p0 [V (s|π−i, π−j)]. (13)

The new teammate policy π−i is trained with an objective that improves the per-trajectory regret
objective (Eq. 9) by adding a term that maximizes the returns from states gathered in mixed-play,
which we describe below.

Let mixed-play starting states be sampled from states visited when π−i interacts with the mixed
policy, that uniformly samples actions from πcomp and BR(π−i) at each timestep:

pMSTART := d

(
π−i,

1

2
πcomp +

1

2
BR(π−i); p0

)
. (14)

From these starting states, CoMeDi then gathers mixed-play interaction data, where π−i interacts
with BR(π−i). The resulting mixed-play state visitation is then expressed as:

pMP := d
(
π−i,BR(π−i); pMSTART

)
. (15)

The complete objective that Sarkar et al. [46] optimizes to train a collection of diverse teammates is
then defined as:

max
π

(Es0∼p0
[
CR(πcomp, π−i, s0)

]
+ Es∼pMP [V (s|π,BR(π))]︸ ︷︷ ︸

mixed-play return maximization

). (16)

CoMeDi [46] optimizes this objective to discourage π−i from learning poor actions for collaborations
outside of pSP. This is because π−i is now also trained to maximize returns in states visited during
mixed-play, which resembles some states encountered while cooperating with πcomp. Discerning
whether a state is likely encountered while interacting with πcomp and consequently choosing to
sabotage collaboration will no longer be an optimal policy to maximize Expr. 16.
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until random t

minimize VXP

maximize VMP

maximize VSP

Objective = VSP - 𝛼VXP + 𝛽VMP

BR actionEgo action

Initial State

Self Play (SP) Cross Play (XP)

Initial State Distribution

State after Mixed Play (MP)

V = Return

Figure 4: CoMeDi-style mixed-play objective for teammate generation, in the context of open-ended AHT.

Despite the importance of using pMSTART as a starting state for data collection being questionable, we
take inspiration from CoMeDi’s maximization of V (s|π,BR(π)) outside of states from pSP. We argue
that maximizing V (s|π−i,BR(π−i)) is a key component towards making π−i act in good faith by
always choosing actions yielding optimal collective returns assuming BR(π−i) is substituted as the
partner policy. Unlike CoMeDi, ROTATE maximizes V (s|π−i,BR(π−i)) on trajectories gathered
from a starting state from pXP instead of pMSTART, which results in the second term of Expr. 10. We
formulate this objective to encourage π−i to act in good faith in states sampled from pXP, which
is visited while π−i interacts with πego. Since π−i is not sabotaging πego by selecting actions that
make collaboration impossible in pXP, the ego policy learning process becomes less challenging. We
conjecture that this leads to πego with better performances as indicated in Figure 3.

While Figure 3 compares ROTATE with CoMeDi, Figure 5a compares ROTATE with a modified
CoMeDi approach that now follows the open-ended training framework described in Algorithm 1. In
this modified version of CoMeDi, we train a newly generated teammate policy to maximize Eq. 16
while substituting πcomp with the trained πego. Rather than promoting meaningful differences with
previously generated teammate policies, this creates a teammate policy that maximizes the ego agent
policy’s per-trajectory regret while mitigating self-sabotage. This version of CoMeDi’s teammate
generation objective within the ROTATE open-ended framework is visualized in Figure 4.

C.2 Alternatives Estimators for Per-State Regret

This section discusses the approach employed by ROTATE in Algorithm 2 to estimate the per-state
regret objective under a specific distribution, as well as an alternative estimation method. Experiments
comparing the two approaches are also presented and discussed.

Recall that the per-state regret under states sampled from a distribution D is defined as:

Es∼D[CR(πego, π−i, s)] = Es∼D
[
V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego)] (17)

= Es∼D
[
V
(
s|π−i, BR(π−i)

)]︸ ︷︷ ︸
SP return

−Es∼D
[
V
(
s|π−i, πego)]︸ ︷︷ ︸

XP return

. (18)

In practice, we can use the policy gradient method to maximize regret by estimating the self-play
returns and cross-play returns in Eq. 18 using the n-step return, Monte Carlo-based return-to-go
estimate, or generally any variant of the advantage function estimator. The choice of return estimates
affects the result of our teammate generation process through the bias-variance tradeoff when
estimating regret. Combined with the potentially different choices of D, we can design different
variants of ROTATE based on how regret is estimated.

ROTATE Per-State Regret: Line 13 in Algorithm 2 and Eq. 11 outline how ROTATE maximizes
per-state regret in states visited during XP interaction (denoted by pXP), where SP and XP returns
are estimated via a trained critic and a 1-step return estimate, respectively. As a reminder, ROTATE
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employs the following target function to train the regret-maximizing teammate policy:

Es∼pXP

 Vσ−i,BR(s)︸ ︷︷ ︸
SP return estimate

− (r + γVσ−i,ego(s′))︸ ︷︷ ︸
XP return estimate

 . (19)

We maximize regret in states sampled from pXP to encourage the design of teammate policies that
provide a learning challenge while also acting in good faith, thereby maximizing cooperative returns
assuming interactions with its best-response policy, while interacting with the ego agent’s policy.
Despite potentially providing biased estimates, training a value function to estimate self-play returns
can reduce the variance caused by environment stochasticity, compared to a Monte Carlo return-to-go
estimate.

The critic network estimating teammate-BR returns, Vσ−i,BR(s), is trained on interactions initialized
from states sampled from pXP (SXP interactions), as shown in Line 15 of Algorithm 2. This enables
the teammate-BR critic network to accurately estimate SP returns from pXP states. Meanwhile,
a 1-step estimate of XP returns is made possible by storage of rewards experienced during XP
interactions (Line 5 of Algorithm 2) and the training of a value function to estimate XP returns
(Line 16 of Algorithm 2). Utilizing a 1-step estimate produces lower variance than using a Monte
Carlo-based return-to-go estimate, while also yielding less bias than predicting returns solely based
on the trained critic network’s value.

Estimating Per-State Regret via Monte Carlo Returns: An alternative approach for estimating is
to use a Monte Carlo-based return-to-go estimate for both SP and XP return estimates. Assuming
that both interaction starts from states encountered during XP interaction, the policy updates under
this alternative approach maximize the following target function:

Est∼pXP

Eat′∼[BR(π−i),π−i],P

[ ∞∑
t′=t

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[ ∞∑
l=0

γt
′
rt′

∣∣∣∣∣st
]

︸ ︷︷ ︸
XP return estimate

 . (20)

We refer to this as the Monte Carlo per-state regret. However, starting both SP and XP interactions
from all states visited in XP can be computationally prohibitive. More importantly, the Monte
Carlo-based return-to-go estimates of SP and XP returns have high variance, especially when the
environment transition function and the trained policies are highly stochastic.

Estimating Per-State Regret via Generalized Advantage Estimators: A final approach for
estimating Eq. 17 is to substitute both return-to-go estimates in Expr. 20 with a generalized advantage
estimator [47] based on SP and XP interactions. This results in the maximization of the following
target function during the teammate policy updates:

Est∼pXP


Eat′∼[BR(π−i),π−i],P

[ ∞∑
t′=t

(γλ)t
′
δ−i,BR
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
SP return estimate

− Eat′∼[πego,π−i],P

[ ∞∑
t′=t

(γλ)t
′
δ−i,ego
t′︸ ︷︷ ︸

GAE

∣∣∣∣∣s0
]

︸ ︷︷ ︸
XP return estimate


,

(21)
where we define δ−i,BR

t and δ−i,ego
t as:

δ−i,BR
t = rt + γVσ−i,BR(st+1)− Vσ−i,BR(st),

δ−i,ego
t = rt + γVσ−i,ego(st+1)− Vσ−i,ego(st).

We refer to an instance of the ROTATE algorithm that maximizes regret using this target function
as ROTATE with GAE per-state regret. In practice, we collect data for SP GAE maximization and
XP GAE minimization by first independently sampling two collections of states from DSXP and
DXP respectively. Next, the states sampled from DSXP are used to maximize the GAE from SXP
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Figure 5: The mean normalized returns of ROTATE and various ablations designed to evaluate the effectiveness
of ROTATE’s regret-based teammate generation objective and population-based ego agent training procedure.

interactions, while states sampled from DXP are utilized to minimize the GAE from XP interactions.
The γ and λ parameters used during the computation of the generalized advantage estimator are
mechanisms to regulate the bias and variance of the regret estimation [47], effectively providing a
different bias-variance tradeoff compared to the previously mentioned methods.

C.3 Experimental Comparisons of ROTATE Teammate Generation Objectives

Figure 5a compares the version of ROTATE presented in the main paper and Algorithm 2, to RO-
TATE with GAE per-state regret, and a version of ROTATE where expected returns are maximized in
states sampled from pMP rather than pSXP, which resembles the mixed-play objective of CoMeDi [46].
We do not implement the Monte Carlo per-state regret estimation approach described above, as it is
impractical and unlikely to yield better results than using value functions to estimate regret. ROTATE
and ROTATE with GAE regret yield mixed results as neither approach consistently beats the other in
all environments. We suspect this is caused by the policy gradient’s different bias and variance levels
when estimating regret using these two methods. Meanwhile, ROTATE’s maximization of returns in
states from pSXP leads to higher normalized returns than maximizing CoMeDi’s mixed-play objective
in all environments except for Overcooked’s Asymmetric Advantages (AA) setting. Following
the difference in starting states of trajectories for which these two maximize self-play returns, we
conjecture that this is because ROTATE empirically teammate policies with good faith in states from
pXP while the CoMeDi-like approach imposes the same thing in states from pMSTART. Imposing good
faith within policies in pXP is likely more important for training an ego agent that initially interacts
with π−i during training by visiting states from pXP.

C.4 ROTATE vs Baselines—Radar Charts

We break down the performance of ROTATE and all baseline methods by individual evaluation
teammate policies as radar charts in Fig. 6. The radar charts show that ROTATE achieves higher
performance across a larger number and variety of evaluation teammates than baselines. The best
baseline, CoMeDi, achieves unusually high returns with the heuristic-based evaluation teammates on
LBF, CR, and CC. We hypothesize that this trend occurs because CoMeDi explicitly optimizes for
novel conventions that do not match existing conventions. However, on these tasks, CoMeDi does
not perform as well as BRDiv teammates, which are trained to maximize the adversarial diversity
objective. The radar charts also show that the second-best baseline, FCP, is strong specifically against
IPPO teammates and relatively weaker on heuristics and BRDiv teammates, especially in CR and CC.
As mentioned in the main paper, we attribute FCP’s relative strength on IPPO evaluation teammates
to the fact that the IPPO evaluation teammates are closer to the training teammate distribution
constructed by FCP. While FCP is not especially strong against the “IPPO pass" agents in CC, these
agents were trained via reward shaping to solve the task by passing onions across the counter rather
than navigating around the counter, which is the policy found by IPPO without reward shaping
(denoted as “IPPO CC" in the figures).
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Figure 6: Normalized mean returns of ROTATE and all baselines across all tasks, broken down by
evaluation teammate in Πeval. Legend shown for LBF applies for all plots.

C.5 Learning Curves
Figure 7 shows learning curves for ROTATE and all ROTATE variations tested in this paper, where
the x-axis is the open-ended learning iteration, and the y-axis corresponds to the mean evaluation
return. On 4/6 tasks (LBF, CR, CC, and FC), ROTATE has better sample efficiency than variants.
On 3/6 tasks (LBF, CR, and FC), ROTATE dominates variants at almost all points in learning.

D Experimental Tasks

Experiments in the main paper are conducted on Jax re-implementations of Level-Based Foraging
(LBF) [2, 5], and five tasks from the Overcooked suite—Cramped Room (CR), Asymmetric Advan-
tages (AA), Counter Circuit (CC), Coordination Ring (CoR), and Forced Coordination (FC) [8, 45].
Each task is described below.
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(c) Cramped Room.
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(e) Forced Coordination.
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Figure 7: Learning curves of ROTATE and all variations of ROTATE considered in this paper.
Normalized mean returns and bootstrapped 95% confidence intervals on Πeval are shown.

Level-Based Foraging (LBF) Originally introduced by Albrecht and Ramamoorthy [2], Level-
Based Foraging is a mixed cooperative-competitive logistics problem where N players interact within
a rectangular grid world to obtain k foods. All players and foods have a positive integer level, where
groups of one to four players may only load (collect) a food if the sum of player levels is greater than
the food’s level. A food’s level is configured so that it is always possible to load it.

We use the Jax re-implementation of LBF by Bonnet et al. [5], which was based on the implementation
by Christianos et al. [12]. The implementation permits the user to specify the number of players,
number of foods, grid world size, level of observability, and whether to set the food level equal to the
sum to player levels in order to force players to coordinate to load each food.

The experiments in this paper configured the LBF environment to a 7× 7 grid, where two players
interact to collect three foods. Our LBF configuration is shown in Fig. 8. Each player observes the
full environment state, allowing each player to observe the locations of other agents and all foods
and the number of time steps elapsed in the current episode. Each player has six discrete actions: up,
down, left, right, no-op, and load, where the last action is the special food collection action. A food
may only be collected if the sum of player levels is greater than the level of the food. Since this paper
focuses on fully cooperative scenarios, we set the food level equal to the level of both players, so all
foods require cooperation in order to be collected. When a food is collected, both players receive an
identical reward, which is normalized such that the maximum return in an episode is 0.5. An episode
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terminates if an invalid action is taken, players collide, or when 100 time steps have passed. Player
and food locations are randomized for each episode.

Figure 8: Level-based foraging
environment. The apple icons de-
note food. The number on the
icon indicates each player’s and
food’s level. The AHT player is
indicated by the red box.

Overcooked Introduced by Carroll et al. [8], the Overcooked suite
is a set of two-player collaborative cooking tasks, based on the
commercially successful Overcooked video game. Designed to study
human-AI collaboration, the original Overcooked suite consists of
five simple environment layouts, where two agents collaborate within
a grid world kitchen to cook and deliver onion soups. While Carroll
et al. [8] introduced Overcooked to study human-AI coordination,
Overcooked has become popularized for AHT research as well [9,
46, 17].

We use the Jax re-implementation of the Overcooked suite by Ruther-
ford et al. [45], which is based on the original implementation by Car-
roll et al. [8]. Later versions of Overcooked include features such
as multiple dish types, order lists, and alternative layouts, but this
paper considers only the five original Overcooked layouts: Cramped
Room (CR), Asymmetric Advantages (AA), Counter Circuit (CC),
Coordination Ring (CoR), and Forced Coordination (FC).

The objective for all five tasks is to deliver as many onion soups as
possible, where the only difference between the tasks is the environ-
ment layout, as shown in Fig. 9. To deliver an onion soup, players
must place three onions in a pot to cook, use a plate to pick up the
cooked soup, and send the plated soup to the delivery location. Each player observes the state and
location of all environment features (counters, pots, delivery, onions, and plates), the position and
orientation of both players, and an urgency indicator, which is 1 if there are 40 or fewer remaining
time steps, and 0 otherwise. Each player has six discrete actions, consisting of the four movement
actions, interact, and no-op. The reward function awards both agents +20 upon successfully deliver-
ing a dish, which is the return reported in the experimental results. To improve sample efficiency, all
algorithms are trained using a shaped reward function that provides each agent an additional reward
of 0.1 for picking up an onion, 0.5 for placing an onion in the pot, 0.1 for picking up a plate, and 1.0
for picking up a soup from the pot with a plate. An episode terminates after 400 time steps. Player
locations are randomized in each episode. In divided layouts such as AA and FC, we ensure that a
player is spawned on each half of the layout.

(a) Cramped
Room.

(b) Coord.
Ring.

(c) Forced
Coord.

(d) Asymmetric Advantages. (e) Counter Circuit.

Figure 9: The five classic Overcooked layouts. Each yellow circle is an onion, while white circles are plates.
Grid spaces with multiple yellow (resp. white) circles are onion (resp. plate) piles, which agents must visit to
pick up an onion (or plate). The green square is the delivery location, where finished dishes must be sent to
receive a reward. Black squares denote free space, while adjacent gray spaces are empty counters. A black pot
icon indicates pots, while agents are shown as red and blue pointers. The AHT agent is highlighted.

E Implementation Details

As implementations of prior methods use PyTorch, but this project uses Jax, we re-implemented
all methods in this paper, using PPO [48] with Generalized Advantage Estimation (GAE) [47] as
a base RL algorithm and Adam [26] as the default optimizer. The code for this paper is released
at https://github.com/carolinewang01/rotate, and we recommend consulting it for a full
understanding of method implementations. Pseudocode for ROTATE is provided in App. A. This
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section discusses implementation details such as training time choices, agent architectures, and key
hyperparameters for ROTATE and all baselines.

E.1 Training Compute

For fair comparison, all open-ended methods (ROTATE and all variations, PAIRED, Minimax
Return) were trained for the same number of open-ended learning iterations and a similar number of
environment interactions. For two-stage teammate generation approaches (FCP, BRDiv, CoMeDi), the
teammate generation stage is run using a similar amount of compute as the original implementations,
while the ego agent training stage is run for a sufficiently large number of steps to allow convergence.
We describe the amount of compute used for the teammate generation stage of each baseline below.

In particular, the FCP population is generated by training 22-23 seeds of IPPO with 5 checkpoints
per seed for a population of approximately 110 agents—similar to Strouse et al. [51], who trained
32 seeds of IPPO with 3 checkpoints per seed for a population size of 96 agents. On the other hand,
BRDiv was trained with a population size of 3-4 agents, until we observed that each agent’s learning
converged. While we attempted training BRDiv with a larger population size, the algorithm was
prone to discovering degenerate solutions where only 2-3 agents in the population could discover
solutions with high SP returns, and all other agents in the population would have zero returns. Finally,
CoMeDi was trained with a population size of 10 agents, until each agent’s learning converged.
We attempted to train CoMeDi with a larger population size, but due to the algorithm’s quadratic
complexity in the population size, its runtime surpassed the available time budget. Nevertheless, the
population size of 10 forms a reasonable comparison to ROTATE because (1) the original paper used
a population size of 8 for all Overcooked tasks, and (2) the configuration of CoMeDi in this paper
runs for a similar wall-clock time as ROTATE.

E.2 Agent Architectures

For all methods considered in this paper, agents are implemented using neural networks and an
actor-critic architecture, as is standard for PPO-based RL algorithms. All AHT methods implement
policies without parameter sharing [12], to enable greater behavioral diversity. Specifics for ego
agents, teammates, and best response agents are described below.

As mentioned in the main paper, ego agents are history-conditioned. Thus, ego agents are implemented
with the S5 actor-critic architecture, a recently introduced recurrent architecture shown to have
stronger long-term memory than prior types of recurrent architectures. Another advantage of the
S5 architecture over typical recurrent architectures (e.g., LSTMs) is that it is parallelizable during
training, allowing significant speedups in Jax [31].

On the other hand, teammates and best response agents are state-based. Best response agents are
implemented with fully connected neural networks. Teammates are also based on fully connected
neural networks, but the precise architecture varies based on the algorithm. For methods where
the teammate only interacts with itself (FCP) or with the ego agent (Minimax Return), a standard
actor-critic architecture is used. However, for open-ended learning methods that optimize regret
(ROTATE and PAIRED), or for teammate generation methods that optimize adversarial diversity
(ComeDi and BRDiv), teammates must estimate returns when interacting with multiple agents. Thus,
for these methods, the teammate architecture includes a critic for each type of interaction.

In particular, for ROTATE and PAIRED, the teammate must estimate returns when interacting with
the ego agent and its best response, and so it maintains a critic network for each partner type. For
CoMeDi and BRDiv, given a population with n agents, each teammate must estimate the return when
interacting with the other n − 1 agents in the population. As it would be impractical to maintain
n− 1 critics for each teammate, the teammate instead uses a critic that conditions on the agent ID of
a candidate partner agent—in effect, implementing the n− 1 critics via parameter sharing [12].

E.3 Hyperparameters

This section presents the hyperparameters for ROTATE (Table 3), baseline methods (Tables 2 and 4
to 8), and training evaluation teammates with IPPO (Table 1). Note that hyperparameters for the
two-stage teammate generation methods are presented in separate tables, where those corresponding

26



Task LBF CR AA CC CoR FC
Timesteps 3e5, 1e6 1e6 1e6 1e6, 3e6 3e6 1e6, 3e6,

1e7
Number
envs

8, 16 8, 16 8 8, 16 8 8

Epochs 7, 15 15 15 15, 30 15 15
Minibatches 4, 8 4, 8, 16,

32
16 16 16 16

Clip-Eps 0.03, 0.05 0.03, 0.05,
0.10, 0.15,
0.2, 0.3

0.2, 0.3 0.1, 0.2 0.1, 0.2,
0.3

0.1, 0.2

Ent-Coef 5e-3, 0.01,
0.03, 0.05

5e-3, 0.01,
0.03, 0.05

0.01, 0.02 0.01, 0.03,
0.05

0.001,
0.01, 0.05

0.01, 0.05

LR 1e-4 1e-4 1e-4, 1e-3 1e-4, 1e-3 1e-4, 5e-4,
1e-3

1e-4, 5e-4,
1e-3

Anneal
LR

true, false true, false true true, false true true

Table 1: Hyperparameters for IPPO.

LBF CR AA CC CoR FC
Timesteps 4.5e7 4.5e7 4.5e7 9e7 9e7 9e7
XP Coefficient 0.1, 0.75, 1, 10 1, 10 10 0.01, 10 0.01, 10 0.01, 0.1, 0.5, 1, 10
Population size 3, 4, 5, 10 2, 3, 4, 5 3, 4 3, 4 3, 4 3, 4
Num Envs 8, 32 8, 32 8, 32 8, 32 8, 32 8, 32
LR 1e-4, 5e-4 1e-4 1e-4 1e-3 1e-3, 5e-4 1e-3, 5e-4
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Clip-Eps 0.03, 0.05 0.05, 0.2 0.3 0.01, 0.1 0.05, 0.1 0.05, 0.1

Table 2: Hyperparameters for the teammate generation stage of BRDiv.

to the shared ego agent training stage are presented in Table 4. All experiments in the paper were
performed with a discount factor of γ = 0.99 and λGAE = 0.95.

Hyperparameters were searched for IPPO, BRDiv, and ROTATE, in that order, with the search for
earlier methods informing initial hyperparameter values for later methods. Based on prior experience
with PPO, we primarily searched the number of environments, epochs, minibatches, learning rate,
entropy coefficient, the epsilon used for clipping the PPO objective, and whether to anneal the
learning rate. For each hyperparameter, the searched values are listed in the tables, and selected
values are bolded. We performed the search manually, typically varying one parameter over the listed
range while holding others fixed, and varying parameters jointly only when varying one at a time did
not yield desired results.

Due to compute constraints, hyperparameters for FCP, CoMeDi, PAIRED, and Minimax Return were
set based on knowledge of appropriate ranges gained from doing the hyperparameter searches over
IPPO, BRDiv, and ROTATE.

F Evaluation Teammate Details

As described in Section 7 of the main paper, evaluation teammates were constructed using three
strategies: training IPPO teammates in self-play using varied seeds and reward shaping, training
teammates with BRDiv, and manually programming heuristic agents. Note that the evaluation

27



LBF CR AA CC CoR FC
OEL Iterations 30 30 30 20 20 20
Num Envs 16 16 16 16 16 16
Regret-SP Weight 1, 2 1, 3 1, 2 1, 2 1, 2 1, 2
Minibatches 4, 8 8 8 8 8 8
Timesteps per Iter
(Ego)

2e6 2e6 2e6 6e6 6e6 6e6

Epochs (Ego) 5, 10, 20 10, 15 10 10 10 5, 10
Ent-Coef (Ego) 1e-4, 1e-3,

0.01, 0.05
1e-4, 1e-3,
1e-2

1e-3, 0.01 1e-3, 0.05 1e-3, 0.05 1e-4, 1e-3,
1e-2

LR (Ego) 5e-5, 1e-4,
1e-3

1e-5, 3e-5,
5e-5, 1e-4

1e-5, 3e-5,
5e-5, 1e-4

3e-5, 5e-5,
1e-3

1e-5, 3e-5,
5e-5, 1e-3

8e-6, 1e-5,
3e-5, 5e-5,
1e-4

Eps-Clip (Ego) 0.05, 0.1 0.1, 0.2 0.1, 0.3 0.1 0.1 0.1
Anneal LR (Ego) true, false true, false true, false true, false true, false true, false
Timesteps per Iter
(T)

1e7 6e6 6e6 1.6e7 1.6e7 1.6e7

Epochs (T) 20 20 20 20 20 20
Ent-Coef (T) 0.05, 0.01 0.01 0.01 0.05 0.05 0.01, 0.05
LR (T) 1e-4, 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3, 1e-4
Clip-Eps (T) 0.1 0.1, 0.2 0.3 0.1 0.1 0.1, 0.2
Anneal LR (T) true, false true, false false false false true, false

Table 3: Hyperparameters for ROTATE. Hyperparameters specific to the teammate training process
are marked by "(T)".

LBF CR AA CC CoR FC
Total Timesteps 3e7 3e7 3e7 6e7 6e7 6e7
Num Envs 8 8 8 8 8 8
LR 5e-5 5e-5 5e-5 5e-5 3e-5 1e-5
Epochs 10 10 10 10 10 5
Minibatches 4 4 4 4 4 4
Ent-Coef 1e-4 1e-3 1e-3 1e-3 1e-3 1e-4
Clip-Eps 0.1 0.1 0.1 0.1 0.1 0.1
Anneal LR false false true true true true

Table 4: Hyperparameters for PPO ego agent for all teammate generation methods.
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LBF CR AA CC CoR FC
Timesteps Per Agent 2e6 2e6 2e6 4e6 4e6 4e6
Num Seeds 23 23 23 22 22 22
Num Checkpoints 5 5 5 5 5 5
Num Envs 8 8 8 8 8 8
LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 16 16 16 16 16
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1
Anneal LR true true true true true true

Table 5: Hyperparameters for teammate generation stage of FCP.

LBF CR AA CC CoR FC
Timesteps Per Iteration 6e6 6e6 6e6 1e7 1e7 1e7
Population Size 10 10 10 10 10 10
Num Envs 16 16 16 16 16 16
LR 5e-4 1e-4 1e-4 1e-3 5e-4 5e-4
Epochs 15 15 15 15 15 15
Minibatches 8 8 8 8 8 8
Ent-Coef 1e-3 0.01 0.01 0.05 0.1 0.01
Eps-Clip 0.05 0.05 0.3 0.01 0.05 0.05
Anneal LR false false false false false false
α 0.2 1.0 1.0 1.0 1.0 1.0
β 0.4 0.5 0.5 0.5 0.5 0.5

Table 6: Hyperparameters for the teammate generation stage of CoMeDi.

LBF CR AA CC CoR FC
Timesteps 7.5e7 7.5e7 7.5e7 1.5e8 1.5e8 1.5e8
Num Seeds 5 5 5 5 5 5
Num Checkpoints 10 10 10 10 10 10
Num Envs 16 16 16 16 16 16
LR 1e-3 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 8 8 8 8 8
Ent-Coef 0.05 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.1 0.2 0.3 0.1 0.1 0.1
Anneal LR false false false false false false

Table 7: Hyperparameters for PAIRED.
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LBF CR AA CC CoR FC
OEL Iterations 30 30 30 20 20 20
Num Envs 16 16 16 16 16 16
Timesteps Per Iter (Ego) 1e6 1e6 1e6 3e6 3e6 3e6
Timesteps Per Iter (T) 1e6 1e6 1e6 3e6 3e6 3e6
LR 1e-4 1e-4 1e-4 1e-3 1e-3 1e-3
Epochs 15 15 15 15 15 15
Minibatches 4 8 8 8 8 8
Ent-Coef 0.01 0.01 0.01 0.05 0.05 0.05
Eps-Clip 0.03 0.2 0.3 0.1 0.1 0.1
Anneal LR false false false false false false

Table 8: Hyperparameters for Minimax Return. Hyperparameters specific to the teammate training
process are marked by "(T)".

Name Description Est. BR Return
brdiv_conf1(0) Teammate trained by BRDiv. 97.396
brdiv_conf1(1) - 100.0
brdiv_conf1(2) - 89.583
brdiv_conf2(0) - 100.0
brdiv_conf2(1) - 62.5

ippo_mlp(0) Teammate trained by IPPO to maximize return. 100.0
ippo_mlp_s2c0(2,0) An intermediate checkpoint of a teammate trained

by IPPO to maximize return.
96.354

seq_agent_col Planning agent that collects food in column-major
order (left to right, top to bottom).

100.0

seq_agent_rcol Planning agent that collects food in reverse column-
major order (right to left, bottom to top).

100.0

seq_agent_lexi Planning agent that collects food in lexicographic
order (top to bottom, left to right).

100.0

seq_agent_rlexi Planning agent that collects food in reverse lexico-
graphic order (bottom to top, right to left).

100.0

seq_agent_nearest Planning agent that collects food in nearest to far-
thest order, based on the Manhattan distance from
the agent’s initial position.

100.0

seq_agent_farthest Planning agent that collects food in farthest to near-
est order, based on the Manhattan distance from
the agent’s initial position.

100.0

Table 9: Evaluation teammates for LBF and estimated best response returns (percent eaten). Hyphens
indicate that the agent description is the same as the previous description.
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Name Description Est. BR Return
brdiv_conf(0) Teammate trained by BRDiv. 214.063
brdiv_conf(1) - 240.940
ippo_mlp(0) Teammate trained by IPPO to maximize return. 256.875
ippo_mlp(1) - 253.750
ippo_mlp(2) - 249.686

independent_agent_0.4 Agent programmed to cook and deliver soups. If
holding item, 40% chance of placing item on the
counter.

197.188

independent_agent_0 Agent programmed to cook and deliver soups. 132.50
onion_agent_0.1 Agent programmed to place onions in non-full pots.

If holding item, 10% chance of placing item on
counter.

146.875

plate_agent_0.1 Agent programmed to plate finished soups and de-
liver. If holding item, 10% chance of placing item
on counter.

191.250

Table 10: Evaluation teammates for Cramped Room and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.

Name Description Est. BR Return
brdiv_conf(0) Teammate trained by BRDiv. 286.875
brdiv_conf(1) - 335.625
brdiv_conf(2) - 333.750
ippo_mlp(0) Teammate trained by IPPO to maximize return. 382.50
ippo_mlp(1) - 369.375
ippo_mlp(2) - 312.50

independent_agent_0 Agent programmed to cook and deliver soups. 308.125
onion_agent_0 Agent programmed to place onions in non-full pots. 301.250
plate_agent_0 Agent programmed to place onions in non-full pots. 285.0

Table 11: Evaluation teammates for Asymmetric Advantages and estimated best response returns.
Hyphens indicate that the agent description is the same as the previous description.

teammates trained using IPPO and BRDiv were trained using different seeds than those used for
training ROTATE and baseline methods.

The teammate construction procedure results in distinct teammate archetypes. Generally, IPPO agents
execute straightforward, return-maximizing strategies. On the other hand, since BRDiv agents are
trained to maximize self-play returns with their best response partner and to minimize cross-play
returns with all other best response policies in the population, the generated teammates display more
adversarial behavior compared to IPPO and heuristics. Coefficients on the SP and XP returns were
carefully tuned to ensure that the behavior was not too adversarial, which we operationalized as
teammates where the SP returns were high, but the XP returns were near zero.

Finally, the manually programmed heuristic agents have a large range of skills and levels of deter-
minism. The LBF heuristics are planning-based agents that deterministically attempt to collect the
apples in a specific order. Given a best response partner, the LBF heuristics can achieve the optimal
task return in LBF. The Overcooked heuristics execute pre-programmed roles that are agnostic to
the layout and some basic collision-avoidance logic. The "onion" heuristic collects onions and
places them in non-full pots. The "plate" heuristic plates soups that are ready, and delivers them.
The "independent" heuristic attempts to fulfill both roles by itself. All three heuristic types have a
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Name Description Est. BR Return
ippo_mlp_cc(0) Teammate trained by IPPO to maximize return. Navi-

gates counterclockwise around counter.
200.625

ippo_mlp_cc(1) - 198.120
ippo_mlp_cc(2) - 194.375

ippo_mlp_pass(0) Teammate trained by IPPO+reward shaping to pass
onions across the counter.

137.813

ippo_mlp_pass(1) - 103.125
ippo_mlp_pass(2) - 170.0

independent_agent_0 Agent programmed to cook and deliver soups. 77.189
onion_agent_0.9 Agent programmed to place onions in non-full pots. If

holding item, 90% chance of placing item on counter.
80.0

onion_agent_0 Agent programmed to place onions in non-full pots. 81.563
plate_agent_0.9 Agent programmed to plate finished soups and de-

liver. If holding item, 90% chance of placing item on
counter.

97.189

plate_agent_0 Agent programmed to place onions in non-full pots. 76.875

Table 12: Evaluation teammates for Counter Circuit and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.

Name Description Est. BR Return
brdiv_conf1(1) Teammate trained by BRDiv. 161.250
brdiv_conf1(2) - 183.440
brdiv_conf2(0) - 142.810

ippo_mlp(1) Teammate trained by IPPO to maximize return. 249.688
ippo_mlp(2) - 246.560
ippo_mlp(3) - 246.560

independent_agent_0 Agent programmed to cook and deliver soups. 136.250
onion_agent_0 Agent programmed to place onions in non-full pots. 72.50
plate_agent_0 Agent programmed to place onions in non-full pots. 110.938

Table 13: Evaluation teammates for Coordination Ring and estimated best response returns. Hyphens
indicate that the agent description is the same as the previous description.
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Name Description Est. BR Return
brdiv_conf1(0) Teammate trained by BRDiv. 131.560
brdiv_conf1(2) - 184.690
brdiv_conf2(1) - 143.750
brdiv_conf3(0) - 71.250
brdiv_conf3(2) - 174.690

ippo_mlp(0) Teammate trained by IPPO to maximize return. 220.0
ippo_mlp(1) - 214.380
ippo_mlp(2) - 225.620

independent_agent_0.6 Agent programmed to cook and deliver soups. If hold-
ing item, 60% chance of placing item on the counter.

81.250

Table 14: Evaluation teammates for Forced Coordination and estimated best response returns.
Hyphens indicate that the agent description is the same as the previous description.

user-specified parameter that defines the probability that the agent places whatever it is holding on
a nearby counter. The feature serves two purposes: first, it creates a larger space of behaviors, and
second, it allows the heuristics to work for the FC task, where the agent in the left half of the kitchen
must pass onions and plates to the right, while the agent in the right half must pick up resources from
the dividing counter, cook soup, and deliver.

Descriptions of the evaluation teammates for each task and estimated best response returns are
provided in Tables 9 to 14.

Evaluation Return Normalization Details. The lower return bound is set to zero since a poor
teammate could always cause a zero return in all tasks considered. Ideally, the upper return bounds
would be the returns achieved with the theoretically optimal best response teammate for each
evaluation teammate. To approximate this, we instead set the upper bound equal to the maximum
average return achieved by any method, for each evaluation teammate.

As described in Section 7, our normalized return metric is similar to the BRProx metric recommended
by Wang et al. [57]. The main difference is that we aggregate results using the mean rather than
the interquartile mean (IQM), due to challenges around determining appropriate upper bounds for
return normalization. In particular, during method development, we used looser BR return estimates
to perform return normalization, leading to normalized returns often surpassing 1.0 for certain
teammates. Under such conditions, aggregating results using the IQM led to entirely dropping results
corresponding to particular teammates.

G Compute infrastructure

Experiments were performed on two servers, each with the following specifications:

• CPUs: two Intel(R) Xeon(R) Gold 6342 CPUs, each with 24 cores and two threads per core.
• GPUs: four NVIDIA A100 GPUs, each with 81920 MiB VRAM.

The experiments in this paper were implemented in Jax and parallelized across seeds. On the servers
above, each method took approximately 4-6 hours of wall-clock time to run.
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