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Abstract— We introduce a learning-guided motion planning
framework that provides initial seed trajectories using a diffu-
sion model for trajectory optimization. Given a workspace, our
method approximates the configuration space (C-space) obsta-
cles through a key-configuration representation that consists of
a sparse set of task-related key configurations, and uses this as
an input to the diffusion model. The diffusion model integrates
regularization terms that encourage collision avoidance and
smooth trajectories during training, and trajectory optimization
refines the generated seed trajectories to further correct any
colliding segments. Our experimental results demonstrate that
using high-quality trajectory priors, learned through our C-
space-grounded diffusion model, enables efficient generation
of collision-free trajectories in narrow-passage environments,
outperforming prior learning- and planning-based baselines.
Videos and additional materials can be found on the project
page: https://kiwi-sherbet.github.io/PRESTO.

I. INTRODUCTION

Motion planning involves finding a smooth and collision-
free path in a high-dimensional configuration space (C-
space). Classical motion planning algorithms typically use
either sampling-based methods [16, 22, 23] or optimization-
based methods [29, 33] to address motion planning across
various domains. However, in high-dimensional C-spaces
with narrow passages, sampling-based methods incur high
computational costs due to large search-space and small
volume of solutions. While optimization-based methods can
be an alternative, such methods are sensitive to initialization
and may become stuck in local optima, often failing to find a
feasible path. Consequently, both approaches have limitations
when dealing with complex motion planning problems under
restricted computational resources.

Recent works leverage generative models to directly learn
trajectory distributions instead [4, 10, 14]. By casting motion
planning as sampling from a learned distribution, these mod-
els can efficiently generate trajectories within a consistent
compute budget. However, they often struggle to generalize
to new, complex C-spaces, resulting in high collision rates in
the generated trajectories, because most of these approaches
use workspace as an input to neural networks, instead of
C-space.

Instead, we propose to represent the environment in terms
of key configurations [19], which are a sparse set of task-
related configurations from prior motion planning data. The
resulting model no longer needs to learn a generalizable
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Fig. 1: Overview of PRESTO. PRESTO aims to generate collision-free
trajectories in complex, unseen C-spaces. First, we approximate these C-
spaces using key configurations from prior data and generate trajectories
based on this representation. Conditional diffusion models, trained with
motion planning loss, provide initial solutions, which are then refined
through trajectory optimization.

mapping between workspace and C-space obstacle repre-
sentations, leading to improved generalization and reduced
training complexity.

Another challenge is designing a training objective for
diffusion models tailored to motion planning. Existing diffu-
sion models for motion-planning use DDPM-based loss [4, 9,
14], which focuses on reconstruction quality [31]. However,
the reconstruction objective does not account for underly-
ing task constraints, resulting in degraded performance for
tasks requiring precise outputs and complex constraints [8].
To overcome this, we incorporate TrajOpt-inspired motion-
planning costs [33] directly into the training pipeline of
diffusion models. By training the model to directly mini-
mize trajectory-optimization costs associated with collision
avoidance and trajectory smoothness, the model learns to
generate smooth and collision-free trajectories. Further, to
ensure that the trajectory satisfies hard constraints such as
collision avoidance, we feed the output of the diffusion
model to trajectory optimization as an initial solution.

We call our combined framework PRESTO (Planning
with Environment Representation, Sampling, and Trajectory
Optimization). Figure 1 summarizes our framework: 1)
an environment representation based on key configurations
(blue block), 2) a training pipeline for diffusion models
that directly integrates trajectory optimization costs (green
block), and 3) a diffusion-based sampling-and-optimization
framework for motion planning, where the diffusion model
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Fig. 2: Trajectory generation pipeline of PRESTO. We obtain the environment representation for an unseen problem by checking the collision states at the
key configurations used during training. Using the trained conditional diffusion model, we generate multiple trajectories conditioned on this representation
and then select the least-colliding trajectory after post-processing.

provides initial trajectories for trajectory optimization (or-
ange block). We evaluate PRESTO in simulated environ-
ments where a robot operates in a fixed scene populated
with randomly shaped and arranged objects. The results
show that the synergy between our diffusion model’s high-
quality trajectory priors and the trajectory optimization post-
processing efficiently generates collision-free trajectories in
narrow passages within a limited compute budget.

II. RELATED WORK

Several approaches use learning to guide motion planning,
where they complement motion planners with learned models
for collision-checking [5, 6, 11, 17, 24, 41] or sampling
promising configurations [2, 12, 13, 18, 20, 21, 36, 38].

One line of work learns collision checkers to expedite
motion planning. While one body of work progressively
learns collision models in a given environment as Gaussian
mixtures [11] or kernel perceptrons [6, 41], others learn deep
neural network models from large offline datasets. Kew et
al. [17] trained a neural network to estimate the clearance
of robot configurations in a fixed environment; Danielczuk
et al. [5] generalize collision predictions to diverse envi-
ronments by training a neural network to estimate collision
states from object and scene point clouds. Recently, Murali
et al. [24] extended neural collision detectors to a partially
observable setting. Our approach can integrate with these
methods for collision-checking to further enhance planning
speed.

Another line of work learns to sample promising con-
figurations, either from explicit distributions constructed via
kernel density estimation [2, 13] or by using neural networks,
where sequence-based models such as LSTMs [21] or a
rejection-sampling policy [38] are used to learn the distri-
bution of collision-free configurations based on the history
of collision states at previously sampled configurations. Al-
ternatively, recent works propose to use generative models to
govern the sampling process. Qureshi et al. [28] maps point-
cloud inputs to the next sampling configuration, stochas-
tically applying dropout in the interim layers to generate

diverse samples. Yu et al. [36] use Graph Neural Networks to
identify promising regions of a roadmap. Ichter et al. [12] and
Kumar et al. [20] employ Conditional Variational Autoen-
coders (CVAEs) to sample task-relevant configurations from
latent spaces. While these methods generate individual or sets
of joint configurations, recent works propose to use diffusion
models to learn the sampling distributions of trajectories to
accelerate motion planning.

Diffuser [14] first explored diffusion models for generating
trajectories across various start and goal configurations in
a fixed environment. Subsequent work aims to generalize
to unseen environments using test-time guidance [4, 30],
but struggles with large environmental variations due to
significant mismatches in learned trajectory distributions.
Recent studies [1] address this issue by applying conditioning
diffusion models on the environments. Notably, Huang et
al. [10] condition on point-cloud representations to sample
motion plans across diverse environments. However, these
models still face challenges in generalizing to new C-
spaces, as motion planning occurs in C-space, but they use
workspace as input to the neural networks.

Prior work explores alternative representations for motion
planning, focusing on C-space grounded approaches [15,
19]. These methods approximate complex C-space from
past problems to find collision-free trajectories in unseen
environments. In particular, our work incorporates a key-
configuration representation inspired by Kim et al. [19],
which utilizes collision states at task-related key configu-
rations to enhance model generalization across varying C-
spaces.

III. PROBLEM DESCRIPTION

Let C be a d-dimensional C-space, which is divided into
two subspaces: Co representing C-space obstacles, and Cf =
C \Co representing the collision-free C-space. We denote the
robot’s configuration as a d-dimensional vector q ∈ C. A
trajectory is represented as a sequence of waypoint configu-
rations τ = (q0, q1, . . . , qT ). Given the start configuration qs



and goal configuration qg , the objective of motion planning
is to find a collision-free path τ ∈ Cf from qs to qg .

In this work, we assume we are provided with a dataset
D = {Dm}Mm=1 that comes from solving M number
of past planning problems, where each data-point Dm =
{qs, qg, τ,G} consists of a start configuration qs, a goal
configuration qg , a trajectory τ , and an environment ge-
ometry G. We assume consistent environment fixtures but
varying object shapes and locations across problems. We
use an optimization-based planner to compute ground-truth
trajectories for training data. Our goal is to develop a
generative model that provides a good initial solution for
trajectory optimization, even in environments with unseen
obstacles and their arrangements.

IV. METHOD

PRESTO comprises of three key components, illustrated
in Figure 1. First, we generate a set of key configurations
and their collision states from the motion-planning dataset.
Based on the resulting representation, we train a conditional
diffusion model, incorporating trajectory optimization costs
to guide the model toward smooth and collision-free tra-
jectories. Finally, we feed the trajectory generated by the
diffusion model to trajectory optimization. Each component
of our framework is detailed in the following sections.

A. Environment Representation

We represent the environment as an approximation of its
C-space using a collection of key configurations selected
from the motion planning dataset. We denote the set of the
key configurations as {qk}Kk=1, where the number of key con-
figurations K determines the resolution of the approximation
for the environment’s C-space1. For each motion planning
problem, we compute the environment representation ϕ ∈
{0, 1}K as a binary vector that specifies the collision status
of key configurations {qk}Kk=1.

Algorithm 1 describes our procedure for generating key
configurations, which is a modified version of the original
algorithm proposed in Kim et al. [18]. It takes the dataset
D and hyperparameters dmin

q , dmin
x , c,K. Here, dmin

q is the
minimum C-space distance between key configurations, dmin

x

is the minimum workspace distance for end-effector tips, c
is the bound on the proportion of environments where the
key configuration is occupied, and K is the number of key
configurations to sample.

We initialize the key configuration set as an empty set
(line 1), then sample key configurations into the buffer until
the target number is reached (lines 2-11). At each step, we
uniformly sample a configuration from D (lines 3-4) and
filter it based on three conditions (lines 5-10). To avoid
duplicates, we ensure that the distance between the new key
configuration and any existing ones exceeds a predefined
threshold in both C-space and workspace distances (lines 5-
6). Additionally, we check that the proportion of collision
states across different environments falls within a given

1Larger K increases the resolution of the C-space approximation, but it
also raises the computational overhead at query time.

range to prioritize informative configurations2 (line 7). If
the configuration meets all criteria, we add it to the key
configuration buffer (lines 8-10). This process generates key
configurations that effectively capture task-relevant regions
of the C-space for motion planning.

B. Training Conditional Diffusion Models

a) Model Architecture: Figure 2 (bottom) illustrates
our model architecture, based on the Diffusion Transformer
(DiT) by Peebles et al. [27]. Our model takes as inputs
the denoised trajectory at the i-th step τi, the environment
representation ϕ, the start and goal joint configurations qs
and qg , and the current diffusion step i. We utilize the v-
prediction model [32], which has been empirically shown to
improve sample quality [31].

To process the inputs, the trajectory τi is first patchi-
fied and projected by an MLP to create input tokens, as
in DiT [27]. The diffusion step i and the start and goal
configurations qs and qg are encoded with high-dimensional
frequency embeddings [27] to capture small changes in these
variables. The trajectory embeddings are used as input tokens
for the transformer, while i, ϕ, qs, and qg are incorporated
as conditioning inputs to align sampled trajectories with the
current scene and endpoint constraints.

The DiT features six transformer blocks for processing
trajectories. Unlike conventional transformers, each trans-
former block in DiT incorporates an additional Adaptive
Layer Normalization (AdaLN) layer, as described by Peebles
et al. [27]. This layer applies additional gating, scaling, and
bias transformations to the features of the output tokens,
with the parameters predicted by a separate MLP based
on the conditioning variables γ, g, b = MLP(i, ϕ, qs, qg).
The output of each block x is then transformed as x̂ =
x+ γ ⊙ ((1 + g)⊙ LN(x) + b), where LN(x) denotes layer
normalization and ⊙ denotes element-wise multiplication.
This process enables the model to adjust its output according
to the current environment and the diffusion iteration.

b) Training with Motion-Planning Costs: Our training
objective includes three terms: Diffusion Loss, Collision

2By limiting the proportion of collision states, we filter out configurations
that never result in collisions, as they provide no meaningful information
about the environment.

Algorithm 1 Key-Configuration Selection.
Require: C-space/Workspace separation distance dmin

q , dmin
x ,

Collision proportion bound c, Motion plan dataset D,
Number of key configurations K

Ensure: Key configurations {q̄k}Kk=1
// Initialization

1: {q} ← ∅ ▷ Initialize key configuration buffer
// Sample and select key configurations

2: while |{q}| < K do
3: {τ, qs, qg,G} ∼ D ▷ Sampling a motion plan instance
4: q ∼ τ ▷ Sampling a configuration
5: dq = MinCSpaceDistance({q} ∪ {q})
6: dx = MinWorkspaceDistance({q} ∪ {q})
7: pc = 1

M

∑M
m=1 EnvCollision(q, n)

8: if dq > dmin
q and dx > dmin

x and pc ∈ (c, 1− c) then
9: {q} ← {q} ∪ {q}

10: end if
11: end while
12: return {q}



Loss, and Smoothing Loss. While Diffusion Loss is identical
to the standard reconstruction objective in diffusion models,
we add Collision Loss and Smoothing Loss to encourage the
model to learn the motion planning constraints.
• Diffusion Loss: This term Ldiffusion represents the standard

loss function used for training conditional diffusion models
based on the DDPM framework.

• Collision Loss: Inspired by TrajOpt [33], this term encour-
ages the model to generate trajectories that maintain a safe
distance from objects and other links. It is defined as

Lcoll =
∑
i,j

|dsafe−sd(Ai,Oj)|++
∑
i̸=j

|dsafe−sd(Ai,Aj)|+,

where |·|+ = max(·, 0) and sd(·) = dist(·)−penetration(·).
Here, dsafe = 0.01 m is the safety margin for the hinge loss.
This loss is summed over each robot link Ai and object
Oj based on the swept volume of the trajectory. The first
term represents robot-environment collision between the i-
th link Ai and the j-th obstacle Oj , while the second term
denotes self-collision between different robot links Ai and
Aj , where i ̸= j.

• Smoothing Loss: This term penalizes the L2-norm be-
tween adjacent configurations, defined as Lsmooth =∑

t |qt − qt−1|2. It regulates the distances between con-
secutive configurations to encourage shorter and smoother
trajectories for the robot.

We use a weighted sum of the loss terms to train our model:
L = w1Ldiffusion + w2Lcoll + w3Lsmooth, with w1 = 1.0,
w2 = 0.05, and w3 = 0.005. The model is not highly
sensitive to these values, but w2 should remain small for
training stability.

C. Trajectory Generation
Figure 2 (top) provides an overview of our trajectory

generation process. The inputs qs, qg, ϕ specify the motion-
planning problem, where qs and qg are the start and goal
configurations, and ϕ is the environment representation from
key configurations’ collision states. During denoising, we use
batch sampling to leverage GPU parallelization, enhancing
the likelihood of finding collision-free trajectories among
stochastic outputs of the diffusion model. Our sampling
follows the Denoising Diffusion Implicit Model [34], which
accelerates the process by using fewer denoising iterations
during inference compared to training. We then apply tra-
jectory optimization to post-process the sampled trajectories
and select the trajectory with the lowest collision cost.

We detail our trajectory generation in Algorithm 2. First,
we compute the environment representation ϕ by checking
the collision status of the key configurations q (line 1). Next,
we initialize the denoising process with a batch of random
noise τN from an isotropic Gaussian distribution (line 2). We
refine the trajectories over N iterations, predicting a denoised
trajectory τi−1 from τi, conditioned on ϕ and the current
iteration i (line 5). Endpoint constraints are applied at each
step to ensure connectivity between the start qs and the goal
qg , following the approach in Diffuser [14] (line 6). This
process continues until the initial trajectory τseed is obtained
(line 9) and is used for post-processing.

In the post-processing phase, we refine the sampled trajec-
tories using a fixed number of trajectory optimization itera-
tions [33] to address potential collisions (line 10). We employ
GPU-parallelized trajectory optimization [35] in batches, as
it removes the need for data exchange between devices.
Finally, we select the trajectory with the fewest colliding
waypoints (line 11).

V. EXPERIMENTS

A. Experimental Setup

We evaluate our method on a motion planning task using
the Franka Emika Panda robot arm [7], traversing a 3-tier
shelf with various objects in simulation (Figure 3, top).

a) Training Setup: Our training domain consists of
5,000 environments with random placements of 1-6 objects
(cuboid, cylinder, sphere), sampled uniformly within each
shelf slot. We sample multiple initial and target joint posi-
tions within each environment’s workspace and plan trajec-
tories using cuRobo [35], resulting in 50,000 environment-
trajectory pairs annotated with key configuration labels as in
Algorithm 1.

b) Evaluation Setup: The evaluation domain is gener-
ated using a procedure similar to the training domain, but
with the dataset partitioned into different difficulty levels.
We create a set of problems categorized into four levels,
with each level comprising 180 different problems, to assess
the performance of PRESTO and the baselines within scenes
of varying complexity.
• Level 1: The shelf is empty, as shown in Figure 3 (top left).

Although the environment remains consistent, the task is
challenging due to the shelf’s non-convex workspace and
the need to connect random start and goal configurations.

• Level 2-3: Each slot contains 1 object for Level 2 and 2
objects for Level 3, adding complexity to the C-space and
requiring environment-conditional collision-free trajectory
generation, as shown in Figure 3 (top center).

• Level 4: Each slot contains 3-4 objects, as shown in
Figure 3 (top right). These environments are the most
challenging due to narrow passages between obstacles, in-
creased C-space complexity, and slower collision-checking
and distance calculations among many objects.

Algorithm 2 PRESTO Trajectory Generation.
Require: Start/Goal configurations {qs, qg}, Environment G,

Key configurations {q̄k}Kk=1, Diffusion model µθ(·),
Noise schedule {σi}Ni=1

Ensure: Output trajectory τbest
// Compute environment representation

1: ϕ = CheckCollision(G, {q̄k}Kk=1)
// Batched denoising with reverse process

2: {τb
N ∼ N (0, I)}Bb=1 ▷ Sample batch of initial trajectories

3: parallel for b = 1, ..., B do
4: for i = N, ..., 1 do
5: τb

i−1 ∼ N
(
µθ(τ

b
i , ϕ, i), σi

)
6: q0 ← qs, qT ← qg ▷ Apply endpoint constraints qs, qg
7: end for
8: end parallel
9: τseed = {τb

0}
B
b=1 ▷ Batch-sized sampled trajectories

// Post-processing
10: τopt = TrajectoryOptimization(τseed)
11: τbest = BestTrajectory(τopt)
12: return τbest



Fig. 3: Main results. We report the success rate (%), collision rate (%), and penetration depth (m) across 180 problems. (Top) The evaluation environments
feature consistent 3-tier shelf fixtures, with randomized object positions that vary across levels. (Bottom) We show PRESTO’s performance changes across
domains and computational budgets compared to the baselines.

We use the following metrics to evaluate the performance
of generated trajectories across PRESTO and other motion
planning methods:
• Success rate: the percentage of successful trajectories,

where the robot completes the trajectory without collisions.
Higher is better.

• Collision rate: the average fraction of colliding segments
in each trajectory. This metric reflects the likelihood of
each joint configuration being collision-free, even if there
are collisions in the overall trajectory. Lower is better.

• Penetration depth: the average maximum penetration
depth in each trajectory. This metric evaluates the deviation
from a collision-free trajectory. Lower is better, as it
indicates easier trajectory optimization.

To systematically evaluate performance changes across dif-
ferent computation budgets, we vary the number of optimiza-
tion iterations during the post-processing phase. The Bi-RRT
baseline was evaluated on an AMD Ryzen 9 5900X and all
other baselines were evaluated on an NVIDIA A5000.

B. Quantitative Evaluation

In our experiments, we seek to evaluate the following
claims:
• Claim 1. Diffusion models using key-configuration-based

representations generalize better to unseen environments
than those using point-cloud-based representations.

• Claim 2. Incorporating trajectory optimization costs in
diffusion-model training enables the model to better learn
task constraints like collision avoidance, compared to using
only the original reconstruction-based objective.

• Claim 3. By seeding trajectories for planners, our method
achieves better computational efficiency compared to pure
planners and higher-quality trajectories compared to pure
learning-based approaches.
To validate our claims, we compare our model’s per-

formance against the following baselines, as presented in
Figure 3 (bottom).

• Bi-RRT: a pure planner from LaValle et al. [23]. Bi-RRT
searches bidirectionally by building random trees from
both start and goal configurations to find collision-free
trajectories in an unknown C-space. Though probabilis-
tically complete, it empirically suffers from slow search
in narrow-passage domains. Since Bi-RRT’s success rate
depends on the provided time, we evaluate its performance
across different search timeouts.

• TrajOpt: a pure planner from Schulman et al. [33] which
optimizes trajectories using a hinge penalty for collisions
and configuration distances. The trajectory optimization
scheme in TrajOpt is the same as PRESTO, without the
initial seed from our diffusion model. We use a GPU-
accelerated implementation from cuRobo [35] and control
the compute budget by adjusting optimization iterations.

• SceneDiffuser: a learning algorithm by Huang et al. [10]
uses a conditional diffusion model for trajectory planning
through sampling. Unlike PRESTO, this baseline con-
ditions on point cloud inputs encoded by Point Trans-
former [40] instead of the C-space representation. We use
the author’s original network implementation, trained on
our dataset.

• Motion Planning Diffusion (MPD): a baseline from Car-
valho et al. [4] uses a diffusion model for trajectory plan-
ning through sampling. Unlike PRESTO, MPD employs
unconditional diffusion models and relies on sampling
guidance for trajectory constraints like collision avoidance
or connecting start and goal configurations. We adapt their
network to our setup and training dataset.

a) Comparison to pure learning algorithms: We first
consider pure learning algorithms SceneDiffuser and MPD,
which do not use a key-configuration-based environment
representation (Claim 1) or the motion-planning-based ob-
jective for training diffusion models (Claim 2). To this end,
we evaluate each baseline’s diffusion model performance
without trajectory optimization post-processing, as shown
by the large black, yellow, and purple dots in Figure 3,



Fig. 4: Ablation study results. We report the success rate (%), collision rate (%), and penetration depth (m) averaged across 180 problems for PRESTO
and the self-variant baselines. (Left) We show performance changes with varying post-processing iterations. (Right) We present performance of trajectories
directly generated by the diffusion models, without post-processing.

which correspond to PRESTO, SceneDiffuser, and MPD.
PRESTO consistently outperforms both SceneDiffuser and
MPD across all levels. For example, in Level 3, PRESTO
has a 52.2% success rate, while SceneDiffuser and MPD
only achieve 0.6% and 12.2%, respectively.

b) Comparison to pure planners: Compared to Bi-RRT,
PRESTO uses diffusion-learned trajectory priors to generate
collision-free trajectories more efficiently, especially in nar-
row passages. In Level 4, PRESTO achieves a 90% success
rate in 1.0 seconds, compared to 2.3 seconds for Bi-RRT.
Furthermore, as environment complexity increases, Bi-RRT
struggles to find valid segments, as the success rate gap
widens from 97.8% vs. 70.6% in Level 1 to 90.6% vs.
46.7% in Level 4 with a 1-second compute budget. Next,
we consider TrajOpt, an optimization-based method. Despite
PRESTO’s computational overhead for running the diffusion
model, its high-quality initial trajectories lead to faster con-
vergence in complex domains (Claim 3). For example, in
Level 2, PRESTO achieves a 97.2% success rate in 1.0 sec-
onds, despite the initial overhead of 0.2 seconds. On the other
hand, TrajOpt’s success rate is under 60% in 1.0 seconds.
The success rate gap with a 1-second compute budget grows
from 26.7% in Level 1 to 37.3% in Level 4, demonstrating
PRESTO’s effectiveness in complex environments.

C. Ablation Studies

To analyze the impact of our contributions and discuss
the claims from Section V-B, we conduct ablation studies
using variants of our method, with results shown in Figure 4.
Additional studies are available on our project website.
• Point-Cloud Conditioning: To validate Claim 1, we train

a variant of PRESTO conditioned on workspace point-
clouds instead of key configurations. We use a Patch-based
transformer [37] to encode the point clouds. The rest of
the architecture remains unchanged.

• Training Without TrajOpt: To validate Claim 2, we train
a variant of PRESTO without motion-planning costs (Col-
lision Loss and Distance Loss). The rest of the architecture
remains unchanged.

a) Generalization of key-configuration representation
(Claim 1): Compared to PRESTO, Point-Cloud Conditioning

exhibits performance degradation across problem levels and
post-processing iterations: collision rates and penetration
depth remain higher, and worsen with increased problem
complexity. For instance, in Level 1-2, PRESTO outperforms
Point-Cloud Conditioning by 1.4% in success rate, 0.3% in
collision rate, and 0.001m in penetration depth. The gaps
increase to 3.6%, 1.4%, and 0.013m in Level 3-4. This
highlights the advantage of using C-space representations
over point-cloud-based conditioning in complex scenes.

b) Efficacy of training with TrajOpt loss (Claim 2):
Compared to PRESTO, Training Without TrajOpt exhibits
performance degradation across all levels. Though less se-
vere than Point-Cloud Conditioning, the trend is consistent:
for example, in Level 1-2, PRESTO outperforms Training
Without TrajOpt by an average of 1.81% in success rate,
0.2% in collision rate, and 0.005m in penetration depth. The
gaps increase to 2.7% in success rate, 0.7% in collision rate,
and 0.004m in penetration depth in Level 3-4. This shows
that incorporating TrajOpt costs for training diffusion models
leads to improved trajectory quality across various domains.

c) Efficacy of post-processing (Claim 3): We observe
that applying trajectory optimization during post-processing
improves performance across all levels. Additionally, we val-
idate that the success of PRESTO is largely due to the high-
quality (nearly collision-free) initial trajectories obtained
from our diffusion model. As shown in Figure 4 (right),
PRESTO in Level 4 outperforms Point-Cloud Conditioning
with a much smaller penetration depth (0.037 m vs. 0.123
m), despite similar initial success rates (51.1% vs. 47.2%),
leading to faster convergence during trajectory optimization.

VI. CONCLUSION

We present PRESTO, a learning-guided motion planning
framework that integrates diffusion-based trajectory sampling
with post-processing trajectory optimization. By incorpo-
rating C-space environment representations based on key
configurations, along with TrajOpt-inspired training objective
for training diffusion models, our framework can efficiently
generate collision-free trajectories in unseen environments.
In simulated experiments, we demonstrate the efficacy of our
framework compared to prior diffusion-based approaches in
planning, as well as conventional motion-planning methods.
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APPENDIX

A. Incorporating Guidance During Sampling

In an unconditional diffusion model, test-time guid-
ance [14, 39] constrains trajectories to specific environments
and start/goal configurations. While prior works [4, 10] rely
on test-time guidance for collision avoidance and endpoint
constraints, we use only conditional diffusion models and
trajectory optimization for strict constraint satisfaction. Here,
we also include an ablation study on the complementary
use of guidance steps during sampling to enhance motion
planning performance.

a) Guidance Function Implementation: As in MPD [4],
the guidance function includes collision and smoothness
costs (same as Section IV-B). Collision costs are computed
with cuRobo [35], and smoothness costs use a Gaussian
Process prior [3, 4]. To ensure stability during guidance, we
first smooth the sampled trajectory with a Gaussian kernel
(σ = 4.0) before computing costs, allowing collision-cost
gradients to affect neighboring points. We then compute the
clamped collision cost (dmax = 0.1) and the smoothness cost,
summing them as ksmoothcsmooth + kcollccoll, with ksmooth =
1e − 9 and kcoll = 1e − 2. Gradients are computed with
PyTorch [26], clamped (gmax = 1.0) to prevent erratic
updates, zeroed at endpoints, and added directly to the
trajectory.

b) Results: Figure 6 compares our model with a variant
that includes guidance steps during denoising iterations.
Overall, guided-sampling enhances the quality of initial
trajectories (black dots represent PRESTO without guidance,
and gray dots represent PRESTO with guidance). For ex-
ample, the success rate of the denoised trajectory before
optimization reaches 92.8% in Level 4, compared to 51.1%
for PRESTO without guidance. However, incorporating guid-
ance requires gradient evaluations for the costs at each
diffusion iteration, resulting in computational overhead. In
Level 3, this overhead accumulates to an average of 0.38
seconds, indicating that the added cost of guidance steps
may occasionally degrade performance within a given time
frame. Despite this, guidance generally improves perfor-
mance across Levels 1-4 in terms of all three metrics: success
rate, collision rate, and penetration depth, given the same

number of trajectory optimization iterations.
We also report the effects of guidance on variants of our

model in Figure 5. Performance across all baselines improves
when guidance steps are applied compared to the original
results in Figure 4. Notably, the success rate gap between
PRESTO and its variants widens with the application of
guidance. For instance, across Level 1-4, the gap between
PRESTO and the closest baseline (Point-Cloud Conditioning)
increases from 2.4% to 4.0%. As PRESTO generates higher-
quality initial trajectories with smaller penetration depths,
spurious collisions are resolved with just a few guidance
steps, leading to greater success rate gains compared to the
ablations of PRESTO.

B. Point Cloud Encoder Architecture

For our ablation with point-cloud inputs (Section V-C),
we design the point-cloud encoder based on recent patch-
based transformers [25, 37]. We divide the R1024×3 point
cloud into 8 patches using farthest-point sampling and k-
nearest neighbors (k = 128). Each patch is normalized,
flattened, and projected into shape embeddings via a 3-
layer MLP with GeLU and Layer Normalization. Positional
embeddings, computed from patch centers using a 2-layer
MLP, are added before processing with a 4-layer transformer
to extract geometric features, which serve as additional input
tokens for the DiT in the diffusion model.

Fig. 6: Results with guided-sampling. We report the success rate (%),
collision rate (%), and penetration depth (m) averaged across 180 problems
for PRESTO and the self-variant baselines. Black dots represent PRESTO
without post-processing, while gray dots represent PRESTO with Guided
Sampling, also without post-processing.

Fig. 5: Ablation studies with guided-sampling. We report the success rate (%), collision rate (%), and penetration depth (m) averaged across 180 problems
for PRESTO and the self-variant baselines with guided-sampling. (Left) We show performance changes with varying post-processing iterations. (Right)
We present performance of trajectories directly generated by the diffusion models, without post-processing.
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