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Abstract

In this paper, we study the problem of exploring an unknown Region Of Interest (ROI)
with a team of aerial robots. The size and shape of the ROI are unknown to the robots. The
objective is to find a tour for each robot such that each point in the ROI must be visible from
the field of view of some robot along its tour.

We propose a recursive depth-first search-based algorithm that yields a constant competi-
tive ratio for the exploration problem. Our analysis also extends to the case where the ROI
is translating, e.g., in the case of marine plumes under constant wind conditions. In the sim-
pler version of the problem where the ROI is modeled as a 2D grid, the competitive ratio is
2(Sr+Sp)(R+blogRc)
(Sr−Sp)(1+blogRc) where R is the number of robots, and Sr and Sp are the robot speed and the

ROI speed, respectively. We also consider a more realistic scenario where the ROI shape is not

restricted to grid cells but an arbitrary shape. We show our algorithm has
2(Sr+Sp)(18R+blogRc)
(Sr−Sp)(1+blogRc)

competitive ratio under some conditions. We empirically verify our algorithm using simula-
tions as well as a proof-of-concept experiment mapping a 2D ROI using an aerial robot with a
downward-facing camera.

Keywords: multi-robot systems, online exploration, aerial robots, competitive algorithm

1 Introduction

We investigate the problem of exploring and mapping an unknown 2D Region Of Interest (ROI)
using a team of aerial robots. Our overall vision is to develop coverage algorithms for enabling
a team of robots to assist emergency responders in disaster scenarios or environmental scientists
in data collection. Figure 1 shows one motivating scenario where autonomous Unmanned Aerial
Vehicles (UAVs) can be used to map the region in a lake that is contaminated by a leaked pollutant
(e.g., chemical spill in a lake). Instead of learning spatiotemporal phenomena or finding a hotspot
in the contaminated region, we are interested in mapping the entire contaminated region, which
could possibly move by the wind. The size and shape of this region are usually not known until
observed by the UAVs. If the UAVs are flying at lower altitudes or if the contaminated region is
large, the UAV will need to plan its motion to explore and map out the unknown ROI using its
onboard sensors (e.g., downwards-facing camera in the case of visible contaminants such as chemical
spills).

Another example is assessing the damage to structures after a natural disaster [1] using downwards-
facing cameras mounted on UAVs. Such assessment is required to estimate the cost of recovery
and reconstruction. As in the previous example, the exact shape of the region that has undergone
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damage may not be known a priori and must be mapped using the UAVs. There are many such
examples of mapping of ROIs of unknown shape and size using robots equipped with appropriate
sensors [2–4].

Figure 1: A UAV conducting plume exploration in an abandoned quarry near Blacksburg, Virginia.

In such scenarios, the larger environment which contains the ROI is known but the exact shape
of the ROI is unknown. We assume that the robot has a sensing pipeline that is capable of taking
in the image and distinguishing whether the robot is above an ROI or not. The goal is to plan
a trajectory for a team of aerial robots to collectively map the ROI in the least amount of time.
The problem of exploring an unknown 2D environment is a well-studied one in the robotics [5–8]
and computational geometry [9–12] communities. However, the problem considered in this paper
differs from these works in the following ways.

While the focus is on monitoring static scenes, our work extends to translating ROI, operating
under constant wind conditions. In that case, we show that the performance of the algorithm is,
not surprisingly, a function of the relative speeds of the robots and the ROI. Depending on the
application, there may exist multiple ROIs in the environment. Furthermore, the robots may start
in a region that is not part of the ROI and may have to find the ROI in the first place. In such
cases, we can use a boustrophedon search pattern to find the ROI [13]. In this paper, we focus only
on mapping a single connected ROI. The single ROI algorithm can be extended to multiple static
ROIs.

We use the notion of competitive ratio [14] to analyze the performance of our algorithm. The
competitive ratio for an online algorithm is defined as the largest (i.e., worst-case input) ratio of
the time taken by the online algorithm to the time taken by an optimal offline algorithm. The
offline algorithm is one which knows the shape of the 2D ROI a priori. We seek algorithms that
have a low (preferably, constant) competitive ratio. Our main result is a constant competitive ratio
for exploring a translating ROI for a fixed number of robots. The constant depends on the relative
speeds of the ROI and the robots.

We require the robots to ensure that all points of the ROI are eventually covered by the sensor
footprints of at least one of the robots along their paths. The objective is to minimize the time
required for all the robots to explore the ROI and return back to the starting position. Our
algorithm builds on the one presented by Higashikawa et al. [12] for exploring an unknown binary
tree. We show how to reduce the problem of exploring the ROI to that of exploring a binary tree.
We first start with the simpler scenario where the ROI is modeled as a 2D grid and then extend
it to translating ROI. We further generalize it to the case where the ROI boundary is any smooth
(formally defined in Section 3) 2D curve with a finite sensor footprint binary sensor. For both
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cases, we show that our algorithm yields a constant-competitive ratio.
We validate our algorithm through simulations that quantify the performance as a function of

the size of the ROI, the number of robots, and the relative speeds of the ROI and the robots. We
also conduct a proof-of-concept field experiment using a UAV with a downwards-facing camera
to explore and map a stationary region of interest (runway). We discuss how to implement the
algorithm in a practical setting and discuss challenges associated with noisy measurements.

In summary, the contributions of the paper are as follows:

• We propose a new exploration algorithm for a team of aerial robots that can completely map
a region of interest of unknown size and shape. We consider a scenario where the environment
is discretized into a grid of cells and the robots are equipped with a camera sensor

• We present a constant competitive ratio algorithm for this problem. Our analysis allows for
arbitrarily shaped ROIs as well as possibly translating ones.

• In addition to theoretical results, we evaluate our algorithm through simulations and proof-
of-concept demonstrations.

A preliminary version of this paper was presented in Sung and Tokekar [15]. This version
improves upon Sung and Tokekar [15] with a more expansive literature survey, a more detailed
explanation on the proposed algorithm, and new simulation results and proof-of-concept experi-
ments, including a description of how to implement the proposed algorithm using a robot with a
downward-facing camera.

The rest of the paper is organized as follows. We begin by introducing the related work in
Section 2. We describe the problem setup in Section 3. Our proposed algorithm for a grid-based
map is presented in Section 4. We then extend this to arbitrarily shaped ROIs in Section 5. We
present results from representative simulations in Section 6 and field experiments in Section 7,
respectively, before concluding with a discussion of future work in Section 8.

2 Related Work

Environmental monitoring has extensively been studied in robotics due to its practical applications.
Some of highlighted tasks include precision agriculture [16,17], wildlife habitat monitoring [13,18,19]
and atmospheric plume tracking [20–22]. For survey results, see Dunbabin and Marques [23]. The
area coverage and exploration are crucial for environmental monitoring as a given environment
must be explored by robots in order to detect a target of interest. Galceran and Carreras [24] listed
coverage path planning algorithms that can be used for different sensing and motion models. In
case of ROI exploration, the aim is to explore and map an ROI by robots with limited sensing
capability.

The objective of online exploration [6–8] is to explore and map a region without having prior
knowledge on the size and shape of the region. We begin with several problems in online exploration
of the environment that do not necessarily focus on the limited Field Of View (FOV) of the sensor,
which is the main focus of this paper. The goal of informative exploration is to maximize the in-
formation gathered along the planned trajectories. Arora and Scherer [25] designed a near-optimal
algorithm for single robot informative path planning where budget constraints exist. Popović et
al. [26] proposed a 3D informative path planning algorithm for a UAV to monitor a terrain. Corah
and Michael [27] developed a near-optimal distributed algorithm for multi-robot exploration, which
approximates the well-known sequential greedy assignment [28]. The tracking problem has also been
studied in regard to online exploration, such as algorithms for tracking radio-tagged invasive fish
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using USVs and ground robots proposed by Plonski et al. [19]. They proved competitive ratios
for navigating an environment containing an unknown obstacle and energy-efficient solar explo-
ration. Localization in online exploration settings is another related topic. Hitz et al. [29] focused
on localizing interesting areas in an unknown environment using level set estimation to monitor
hazardous cyanobacteria blooms in lakes. The objective in these works was not to completely map
an unknown environment (which is the case in this paper) but to maximize information gain, track
and localize targets of interest.

In the online exploration literature, there are several path planning algorithms that have been
proposed. Sim and Little [30] proposed a vision-based exploration and mapping solution for a single
robot. Cesare et al. [31] developed a multi-robot exploration algorithm for heterogeneous robots
with limited communication and battery-life constraints. However, these works do not guarantee
complete coverage.

Some online exploration algorithms guarantee completeness but do not exhibit competitiveness.
Bender et al. [32] and Das et al. [33] addressed the problem of dealing with unlabelled (i.e., anony-
mous) vertices when exploring an unknown graph. The former defined a pebble that can identify
a vertex and found the number of pebbles required to map an unknown environment. While the
former considered the case of a single robot, the latter proposed a distributed version, allowing
multiple robots to start from different vertices, and proved upper bounds on the time complexity of
their algorithm. Their algorithms, however, do not yield a competitive ratio used as a performance
measure in this paper.

When an ROI region can be represented by a grid polygon, there exists literature which explores
a polygonal region not only completely but also competitively with respect to the optimal trajectory.
This can be categorized into lawn mowing and milling where the former allows a robot to move
outside the boundary of a polygon whereas the latter does not. Icking et al. [34] proposed a strategy
of generating a competitive tour for online milling which may contain holes. Icking et al. [9] showed
4
3–competitive algorithm for online milling without considering holes. The algorithms presented
by Arkin et al. [35] have (3 + ε)–approximation for offline lawn mowing and 2.5–approximation
for offline milling. Kolenderska et al. [10] developed an online milling algorithm of a grid polygon
without holes that has a competitive ratio of 5

4 . However, aforementioned works did not take into
account a multi-agent perspective. Although Arya et al. [36] presented an approximation algorithm
for milling where multiple robots can be deployed, their algorithm solves an offline problem. In
this work, we pose an online milling version for multiple robots, taking into account their limited
sensor FOV.

Previous works in computational geometry assumed specific properties of the region under
exploration to ease the analysis. We restrict the ROI to satisfy a specific notion of fatness (defined
in the next section). Van der Stappen and Overmars [37] used the notion of k–fatness in motion
planning with obstacles — the smaller the value of k, the fatter the obstacle. Efrat [38] defined
a (α, β)–covered object if each angle of a triangle fully inside the object is at least α and each
edge of this triangle is at least β multiplied by the diameter of the object are satisfied. Aloupis et
al. [39] adopted the same notation of the fatness for the application of triangulating and guarding
polygons. Lee et al. [40] used a similar fatness for a triangulation of a planar region for multi-robot
coverage. These works exploited the fatness to prove the space complexity of their algorithms. In
this work, we also define the fatness for proving the competitive ratio for arbitrary ROI shape.

There are competitive algorithms designed for the single-robot case. Gabriely and Rimon [41]
proposed a spanning tree-based coverage algorithm and studied running time and space requirement
with respect to the number of cells in the environment. Klein et al. [42] considered the problem
of covering an unknown contamination that expands over time. They proved the upper bound
on the number of steps required for the robot to completely cover the contamination. Sharma et
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al. [43] proposed a constant-factor approximation algorithm for a square-shaped robot to explore
an unknown polygonal environment.

When multiple robots are considered, most of works [5,11,12,44–46] have studied a tree-based
exploration by employing a recursive Depth-First Search (DFS). In these works, the environment to
be explored was assumed to be a tree. Fraigniaud et al. [11] proposed a tree exploration algorithm
using R robots that is O( R

logR)–competitive. In their work, each robot was allowed to observe
the incident edges but not the adjacent vertices. Brass et al. [5] used the same sensing model
and improved the competitive ratio of Fraigniaud et al. [11] to 2|E|/R + O((R + r)R−1), where
|E| and r denote the number of edges and radius of the graph, respectively. Dynia et al. [45]
improved the lower bound proposed by Fraigniaud et al. [11] of 2 − 1

R to Ω( logR
log logR). As a dual

problem, instead of finding competitive trajectories for given robots, Das et al. [47] presented an
algorithm for minimizing the number of robots given limited energy E for each robot. Megow et
al. [48] showed that the competitive ratio of a single-robot DFS is 2(2 + ε)(1 + 2/ε), where ε is
a fixed positive parameter, when applied to general graphs. Higashikawa et al. [12] presented a
R+blogRc
1+blogRc –competitive algorithm for exploring a binary tree with R robots. Preshant et al. [46]

showed that the competitive ratio remains largely the same, 2(
√
2R+logR)
1+logR , where the environment

was an orthogonal polygon1 but was modeled as a tree. We build on this and generalize this to the
case where the environment boundary is not necessarily orthogonal. In fact, it can be curved and
may contain holes as well. Furthermore, we show how to adapt this algorithm to the case where
the environment itself is translating.

To share information among multiple robots, global or local communication can be used. Das et
al. [33] and Brass et al. [5] introduced bookkeeping devices to write local information on the vertex
so that other robots can read this information when they visit the same vertex later. Lee et
al. [40] proposed distributed online exploration algorithms assuming a fully connected network.
In Higashikawa et al. [12], robots can communicate with each other when they meet at the same
vertex. We adopt the same model.

3 Problem Description

We consider the problem of mapping an ROI (Definition 1) using a team with R robots. The size
and shape of the ROI are not known to the robots a priori. We use P ∈ R2 to denote the 2D ROI.
Let int(P ) be the interior of P and ∂P be the boundary of P .

We assume that each robot has a camera with a square footprint on the plane containing the
ROI. Without loss of generality, we assume that the side length of the square sensor footprint is 1
in this work.

To avoid complications due to the trivial case of a small ROI, we assume that the ROI is at
least as large as the sensor footprint of the robots. Specifically, we require the ROI to satisfy the
following assumption.

Definition 1. (Fat ROIs) For any p′ ∈ ∂P , let p ∈ int(P ) be a point on the normal to ∂P

at p′ such that p is at a distance of
√
2
2 from p′. Let B(p) be an open ball of radius

√
2
2 , i.e.,

B(p) = {q | ‖p− q‖2 <
√
2
2 } where q ∈ R2. We say that the ROI P is fat if B(p) lies completely

inside int(P ) for all p′ ∈ ∂P .

1An orthogonal polygon is one in which the edges are aligned with either the X or Y axes.
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Figure 2: We restrict our attention to ROIs that are fat (Definition 1).

Figure 2 shows an example of an ROI that is fat. This definition disallows ROIs that have a
width less than that of the sensor footprint of the robot. Note, however, we still allow the ROI to
contain one or more holes.

While our focus is on mapping ROIs that are stationary, our analysis also extends to the case
where the ROI is translating. For that case, we assume that the ROI translates with a fixed speed
of Sp in a fixed direction, both of which are known to the robots.2 For example, the velocity of a
plume can be determined from the flow of the water which can be found from the environmental
conditions such as wind and ocean current models [49]. We assume that all robots move at a speed
of Sr > Sp.

We focus on the mapping problem in this paper. Therefore, we assume that all robots start at
the same location where they first observe the ROI. We seek tours for each robot that explore the
ROI and return back to this starting location.

Problem 1. (Multi-Robot Exploration of Translating ROI) Find a tour for all the robots
that minimizes the exploration time such that every point in the ROI is visible from the sensor
footprint of at least one robot’s tour. All tours must return to the same starting position. The
exploration time is given by the time when the last robot returns to the starting position.

The proposed problem is an online exploration problem. The objective function is the explo-
ration time which is the time of the longest tour. In the next section, we present an algorithm that
is based on recursive DFS which is competitive with respect to the optimal solution.

4 ROI Exploration over a Grid Map

In this section, we present our main algorithm. We first solve a simpler version of Problem 1 where
the ROI is approximated as a grid map. We then use this result to solve Problem 1 by relaxing the
grid approximation afterwards. Our algorithm is based on the recursive DFS that models the ROI
under exploration as a tree. We first show that our strategy is competitive for the grid map case
and then analyze the effect of approximating an arbitrary ROI shape with a grid.

2This is equivalent to the rigid-body translation of P .
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4.1 Recursive DFS Algorithm for a Grid Map

In this section, we assume that the ROI is represented as a grid map [50]. The environment is
modeled as a collection of cells, each of which is a square of unit side length. Each cell is connected
to four of its neighbors. The ROI P is just a collection of C cells that form one connected set (if
a cell c ∈ P is part of the connected ROI P , then one of its four neighbors must also be a part of
the ROI when C > 1).

The problem of exploring the ROI is then simplified to that of exploring a grid map and identify
the cells that belong in P . Since we assume that the sensor footprint is also a unit square, a robot
may obtain an image by positioning itself at the center of a cell. By analyzing the pixels on the
boundary of the image, the robot can then determine if any of the four neighboring cells are also
part of the ROI or not.

We model P as a tree and propose a recursive DFS algorithm based on the tree exploration
algorithm given by Higashikawa et al. [12]. Higashikawa et al. [12] developed a recursive DFS
algorithm for exploring a binary tree. In our case, the grid graph to be explored is not necessarily
a tree (it may contain cycles). Regardless, we show that modeling the underlying graph as a binary
tree still leads to an algorithm with a constant competitive ratio.

The root of the tree is the cell corresponding to the starting position of the robots. Upon
visiting a cell, the robots can identify if one or more of the four neighboring cells also contain the
ROI. The neighboring cells that contain the ROI are added as children of the present cell in the
tree unless those cells have been previously added to the tree. This condition prevents cycles.

The number of neighboring cells when a robot visits a new cell can be at most three. Therefore,
the resulting tree may not be binary. However, by introducing a dummy edge of length 0 and a
dummy vertex, we can convert the tree into a binary tree without loss of generality.3

Each neighboring ROI cell determined by the sensing model becomes one of candidate cells that
robots can choose from as the next vertex to visit. The goal becomes to visit all C − 1 cells (that
correspond to the ROI cells but excluding the starting cell) at least once by one of the robots.

If R = 1, then our algorithm becomes conventional recursive DFS for a single robot. However,
in the multi-robot case, as the robots build the tree, we split the robots as equally as possible and
assign them to explore the children vertices.

We define three states for each vertex in the tree: unexplored if the vertex is not visited by
any robots; under exploration if the vertex is visited by any robots but the leaf vertex connected
from the vertex is not visited by any robots; and explored if the vertex as well as the leaf vertex
in the same branch are visited by any robots. When robots decide which vertex to move among
neighboring cells of an ROI region, they do not consider explored vertices but vertices that are
either unexplored or under exploration. This is because having explored vertex means that the
offspring of it must have also been explored by any robots (see Figure 3).

The details are given in Algorithm 1.4 All vertices are marked as unexplored state in the
beginning. Each robot runs Algorithm 1 whenever it reaches a vertex. The algorithm can be
implemented to a single robot independently with respect to other robots as long as they can
share the state information of vertices. The robots need to share local information with each other
only when they meet at the same vertex. Thus, the algorithm supports distributed communication
while still preserving guarantees presented in Section 4.2. The algorithm terminates when all robots
return to the starting vertex and all vertices are marked as explored.

3This step is included in Line 15 of Algorithm 1.
4In the algorithm, we use N(vi) to denote the neighborhood of the i-th vertex such that N(vi) = {vj ∈ V |(vj , vi) ∈

E}.
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Algorithm 1: Multi-Robot Recursive DFS

1

2 Observe N(v) to determine whether neighboring cells are ROI cells or non-ROI cells.
3 if |N(v)|=0 then
4 Mark v as explored.
5 Move back to the parent vertex (→next vertex) and directly jump to Line 24.

6 end
7 Communicate with robots to update the state of N(v), i.e., unexplored, under exploration,

and explored.
8 N(v)← N(v)\{explored vertices}.
9 if v′ ∈ N(v) is under exploration then

10 if moving to v′ generates a cycle in the tree then
11 N(v)← N(v)\{v′}.
12 end

13 end
14 if |N(v)| > 1 then
15 if |N(v)| > 2 then
16 Add a dummy edge of length 0 and a dummy vertex in order to keep the tree as a

binary tree.
17 end
18 Split robots at v into two children as equally as possible.
19 Move to one of two children (→next vertex) and mark v as under exploration.

20 else if |N(v)| = 1 then
21 Move to the child (→next vertex) and mark v as under exploration.
22 else if |N(v)| = 0 then
23 Move back to the parent vertex (→next vertex).
24 end
25 v ←the next vertex.

8



(a) Two robots exploring the grid map. (b) Tree generated from the recursive
DFS.

Figure 3: Description of tree components. The binary tree consists of a backbone and a finite
number of ribs. Each vertex is marked as one of unexplored, under exploration or explored.

4.2 Theoretical Analysis

In this section we analyze the proposed Algorithm 1. We start with the upper bound analysis. We
then show the lower bound for optimal algorithm, followed by the competitive analysis for the case
of grid approximation.

Upper Bound Analysis To analyze the cost of the proposed algorithm, we adapt the reward5

collecting rule proposed by Higashikawa et al. [12] to the case of a translating ROI. The reward
measures how beneficial it is to visit unexplored vertices and is used to derive theoretical bounds
with respect to the optimal reward that can be obtained by exploring a known graph. Note that
this rule is not required for implementing the algorithm, but only for analyzing the competitive
ratio.

Higashikawa et al. [12] define the concept of a backbone and a rib in a tree (shown in Figure 3).
The backbone is a path that starts from the root vertex and ends at one of the leaf vertices. The
rib is a subtree generated by discarding the backbone and edges incident with the backbone from
the original tree.

Let l(e) be the length of an edge e. The length of an edge e is 0 if e is dummy edge or 1 otherwise.
L =

∑
e∈E l(e) be the sum of the total length of all edges in the tree. Note that L = C − 1 where

the ROI consisting of C cells is represented by the tree structure.
Higashikawa et al. [12] define two reward functions, each with a total reward of l(e), on every rib

edge e and 1 + blogRc reward functions, again each with a total reward of l(e), on every backbone
edge e. The rewards are collected continuously by the robots following the rules described next: (1)
Only one robot in a group traversing a rib edge in the forward direction for the first time collects
a reward. (2) Only one robot in a group traversing a rib edge in the backward direction for the
first time collects a reward. (3) Each of the 1 + blogRc robots traversing a backbone edge in the
forward direction for the first time collects a reward. (4) Only one robot in a group traversing a
backbone edge after the first group collects a reward.

5We use the term reward function to replace the term token defined in Higashikawa et al. [12].
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Let tlast be the time when the last robot reaches a leaf vertex in the tree. Higashikawa et al. [12]
show that the total sum of rewards collected by all the robots is at least (1 + blogRc)tlast. This
assumes that the robots move at unit speed and the tree is static. In our case, the tree (actually,
ROI) is moving with a speed of Sp and the robots are moving with a speed of Sr. The reward
collection rule does not change in this case. What changes is the total sum of rewards collected
in tlast time. In our case, the total sum of rewards collected by all the robots will be at least
(Sr − Sp)(1 + blogRc)tlast. The term (Sr − Sp) comes from the lower bound on the relative speeds
of the robots and the ROI.

Higashikawa et al. [12] also show that the total possible reward that the robots can collect is
at most 2(L− dmax) + (1 + blogRc)dmax. Here dmax denotes the distance of the farthest vertex in
the tree from the root. Therefore, we have:

(Sr − Sp)(1 + blogRc)tlast
≤ 2(L− dmax) + (1 + blogRc)dmax.

(1)

We denote the time taken by the proposed algorithm by ALG. We are now ready to state the
upper bound on ALG.

Lemma 1 (Upper Bound for Multi-Robot Recursive DFS).

ALG ≤ 2(C + dmaxblogRc)
(Sr − Sp)(1 + blogRc)

. (2)

Proof. ALG can be upper bounded as follows:

ALG ≤ tlast +
dmax

Sr − Sp
, (3)

where dmax
Sr−Sp

is the time taken to traverse the longest length of the backbone when the robot and

the ROI move away from each other. By using Equation (1), we have:

tlast +
dmax

Sr − Sp
≤ 2L+ (blogRc − 1)dmax

(Sr − Sp)(1 + blogRc)
+

dmax

Sr − Sp
, (4)

=
2(C − 1 + dmaxblogRc)
(Sr − Sp)(1 + blogRc)

, (5)

≤ 2(C + dmaxblogRc)
(Sr − Sp)(1 + blogRc)

. (6)

Equation (5) is obtained by the fact that L = C − 1. Removing a negative term from Equation
(5) completes the proof as Equation (6).

Corollary 1 (Special Cases). Upper bounds for the following special cases can be derived from
Lemma 1, such as Multi-Robot Static ROI (MRSR), Single Robot Translating ROI (SRTR), and
Single Robot Static ROI (SRSR).

Note that the upper bound for MRSR becomes the result from Higashikawa et al. [12] if Sr = 1.
Also, the upper bound for SRSR is equivalent to Icking et al. [34] if Sr = 1.

Proof. The upper bound for MRSR can simply be obtained by plugging Sp = 0 into Equation (2)
of Lemma 1.
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MRSR ALG ≤ 2(C+dmaxblogRc)
Sr(1+blogRc)

SRTR ALG ≤ 2C
Sr−Sp

SRSR ALG ≤ 2C
Sr

Table 1: Upper bounds of special cases.

The upper bound for SRTR can be derived from the upper bound of MRSR by having R = 0.
However, we can even tighten the bound by using the following observation: if the robot and the
ROI move toward each other in one direction, they must move away from each other in order to
return to the starting location, and vice versa. Therefore, ALG can be upper bounded as:

ALG ≤ C − 1

Sr + Sp
+

C − 1

Sr − Sp
. (7)

Taking out negative terms from the above equation becomes:

ALG ≤ 2SrC

(Sr + Sp)(Sr − Sp)
, (8)

which is a tighter bound than 2C
Sr−Sp

. Note that the difference between these bounds is Sr
Sr+Sp

that

satisfies 1
2 <

Sr
Sr+Sp

≤ 1 because Sr > Sp.
The upper bound for SRSR can be derived by plugging either R = 1 and Sp = 0 into the upper

bound for MRSR or Sp = 0 into the upper bound for SRTR.

Lower Bound Analysis We study the lower bound for the optimal algorithm in order to obtain
a competitive ratio. Let OPT1g be the time taken by the optimal algorithm to explore a grid map
when using a single robot. The lower bound can be constructed as:

OPT1g ≥
C − 1

Sr + Sp
. (9)

We use OPTRg to represent the time taken by the optimal algorithm over any grid polygon of an

ROI region using R robots. Then, the following lemma gives the lower bound for OPTRg .

Lemma 2 (Lower Bound for Optimal Algorithm).

OPTRg ≥
C − 1

(Sr + Sp)R
. (10)

Proof. We claim the following inequalities.

OPTR ≤ OPT1, (11)

This can be obtained from the fact that the more number of robots are deployed, the shorter
time will be taken to explore the entire tree.

Consider a tree consisting of R branches. Then, we claim the following inequality:

OPT1 ≤ ROPTR, (12)

Since OPTR is the time for a robot to explore the longest branch in the tree, ROPTR must be no
less than OPT1.

Combining these inequalities and Equation (9), we prove Lemma 2.
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It should be noted that the lower bound in Lemma 2 is loose, as shown in Figure 7, and thus
improving the lower bound is of interest.

Theorem 1 (Competitive Ratio over the Grid Polygon). The competitive ratio of Algorithm 1 for
a grid map is:

ALG ≤2(Sr + Sp)(R+ blogRc)
(Sr − Sp)(1 + blogRc)

OPTRg

+
2

(Sr − Sp)(1 + blogRc)
.

(13)

Proof. Substituting Equation (10) into Equation (2) gives:

ALG ≤
2((Sr + Sp)ROPT

R
g + 1 + dmaxblogRc)

(Sr − Sp)(1 + blogRc)
. (14)

Since dmax
Sr+Sp

≤ OPTRg , it follows:

ALG ≤
2(Sr + Sp)(R+ blogRc)OPTRg + 2

(Sr − Sp)(1 + blogRc)
. (15)

5 ROI Exploration over an Arbitrary ROI Shape

The presented results so far are for a grid map approximation of the ROI. In this section, we will
relate the bounds obtained for the grid map case to the case of arbitrarily shaped ROIs. Specifically,
we will extend Lemma 1 to apply to an ROI region that may have an arbitrary shape.

The algorithm for exploring the ROI remains the same. We will still construct a tree that
represents a grid map of the ROI. The main difference here is that in the previous analysis, we
assumed that the boundary of the ROI matched the boundary of a grid map exactly. This will
no longer hold. Instead, we will explore a grid map that is an outer approximation of the ROI
(Figure 4).

We define CALG
out and CALG

in to denote the number of cells in the outer and inner grid approxi-
mation by our algorithm, respectively. The outer grid map completely contains the ROI whereas
the inner grid map lies completely inside the ROI. Therefore, the term C in the upper bound
(Lemma 1) will now be replaced by CALG

out . However, the C term in the lower bound (Lemma 2)
cannot be replaced by CALG

in . This is because CALG
in is defined by the grid imposed by our algo-

rithm. It may be possible to have another grid map (of the same unit side length) that is oriented
and/or translated such that it contains fewer than CALG

in cells in the interior. We will first find the
relationship between CALG

out and CALG
in . Then, we will relate CALG

in to CBEST
in which is the best grid

that contains the fewest number of cells completely inside the ROI.
By a slight abuse of notation, we interchangeably use CALG

out and CALG
in to also denote the

corresponding set of cells (along with denoting the number of cells in the set).

Lemma 3 (Grid Approximation of Arbitrary ROI Shape). The upper bound on CALG
out for a fat

polygon (from Definition 1) is given by:

CALG
out ≤ 3CALG

in + 6. (16)
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Figure 4: Row formation of CALG
in cells as the number of cells changes from 1 to a finite number.

Proof. To prove the lemma, we define an Excess set that contains all cells, CALG
out \CALG

in . That is,
Excess set contains all cells in CALG

out but not in CALG
in . Therefore, the size of the Excess set is

equal to CALG
out − CALG

in . We prove the lemma in three steps.
Excess is maximum if and only if all the corners of all cells in CALG

in are also corners of all
cells in the Excess set. In other words, if there exists at least one corner of any cell in CALG

in not
belonging to a cell in the Excess set, Excess is not maximum. An example of such case is where
CALG
in is 2 × 2 set of four cells where the corner in the middle does not belong to any cells in the

Excess set.
In fact, if the condition for minimum Excess is satisfied, then there cannot be any 2× 2 set of

cells all belonging to CALG
in . It can be easily shown that we can always convert any shapes of cells

in CALG
in into a single row formation of cells (shown in the middle in Figure 4) without decreasing

the number of cells in the Excess set.
If the single row formation is formed by a single cell, then the cell in CALG

in contributes two cells
that are in the Excess set (one above and one below) in addition to three more cells on either end
point. This is shown in the left in Figure 4. Therefore, by generalizing this to the case of any finite
number of cells, the size of Excess set becomes 2CALG

in + 6.

Figure 5: Example demonstrating how the grid approximation over arbitrary ROI affects the
required number of cells to be visited to completely explore the ROI. Two grids with respect to
different coordinate frames are applied to the same ROI. As {CALG

in }1 has fewer cells than {CALG
in }2,

{CALG
in }1 constructs a smaller tree.

The grid corresponding to CALG
out and CALG

in is generated by the proposed algorithm. It is possible
that there exists some other grid which has fewer than CALG

in cells completely contained within the
ROI. Since the ROI has an arbitrary shape, a fewer number of cells covering the entire ROI leads
to a fewer number of vertices in the tree, which would reduce the exploration time (example is
included in Figure 5). It may not be possible to generate this “best” grid due to the nature of
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online exploration. Nevertheless, we analyze the relationship between CALG
in and CBEST

in . We define
CBEST
in to denote the fewest number of cells in the inner grid approximation that is completely

contained in the ROI (and adding any other cell to CBEST
in would not allow CBEST

in to be completely
inside the ROI). The relationship is given by:

Lemma 4 (Best Possible Grid-Approximation).

CALG
in ≤ 6CBEST

in . (17)

Proof. To prove this relationship, it is sufficient to consider any grid approximation (generated by
any algorithm) with respect to the best grid approximation.

Figure 6: A part of grid cell from any grid approximation. Unique number is assigned to a different
side of grid cells.

Figure 6 shows a part of grid cells generated by any grid approximation. Each number in the
figure corresponds to a different side of grid cells. Let CBEST

in be a single grid cell generated from
the best grid approximation that overlaps with the central cell (4, 6, 7, 9) without loss of generality.
Our observation is that the number of crossings is equal to the number of cells in CALG

in that CBEST
in

overlaps.
We prove that 7 crossings are impossible. In order to cross more than four edges, CBEST

in has
to cross all of the (4, 6, 7, 9) edges. In addition, it must cross three of (1, 2, 3, 5, 8, 10, 11, 12) edges.
Let us consider the case when edge (1) is crossed. The other cases are symmetric. If edge (1) is
crossed, then crossing (5, 8, 10, 11, 12) is impossible since these edges are more than a unit distance
apart. Only (2) and (3) edges are only available edges to cross more. However, if CBEST

in crosses
both (2) and (3) edges, the side length of CBEST

in becomes greater than 1. Therefore, CBEST
in cannot

cross more than seven edges. Therefore, CALG
in ≤ 6CBEST

in .

Finally we give our main result as follows:

Theorem 2 (Competitive Ratio for Arbitrary ROI Shape). Let OPTR be the time taken by the
optimal algorithm over any arbitrary ROI shape using R robots.

ALG ≤2(Sr + Sp)(18R+ blogRc)
(Sr − Sp)(1 + blogRc)

OPTR

+
48

(Sr − Sp)(1 + blogRc)
.

(18)
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Proof. Although OPTR is the cost for any arbitrary ROI shape, we can still lower bound this using
CBEST
in (similar to Lemma 2) as:

OPTR ≥ CBEST
in − 1

(Sr + Sp)R
. (19)

Let (Sr − Sp)(1 + blogRc) be M. We can obtain the following inequalities from Lemmas 1, 3,
and 4 as follows.

ALG ≤ αCALG
out + a ≤ βCALG

in + b ≤ γCBEST
in + b, (20)

where α = 2
M , a = 2dmaxblogRc

M , β = 6
M , b = 12

M + 2dmaxblogRc
M , and γ = 36

M .

Substituting Equation (19) into the last inequality of Equation (20) and using dmax
Sr+Sp

≤ OPTR,
we have:

ALG ≤ 36(Sr + Sp)R

M
OPTR +

48 + 2dmaxblogRc
M

,

≤ 2(Sr + Sp)(18R+ blogRc)
M

OPTR +
48

M
.

(21)

6 Simulations

We empirically evaluated our algorithm using MATLAB simulations. Specifically, we verified the
performance of the proposed recursive DFS for the grid map approximation of the ROI (Theorem 1).

We randomly generated a set of ROI grid maps. We randomly chose one of four directions (i.e.,
north, south, east, and west) for the direction of translation of the ROI. The assumption that the
moving direction of the ROI is known a priori enables robots to align the axis of the grid map with
that direction although robots still do not know about best approximation for grid map. Figure 7
(a) shows an example of the generated ROI that consists of 200 cells.

We measured the cost of our algorithm as well as the upper and lower bounds by changing the
number of ROI cells, the number of robots, and the speed ratio between the robot and the ROI.
The lower bound in our analysis is given in Lemma 2. In deriving the lower bound, we assume that
the robots always travel opposite to the direction of translation of the ROI, thereby yielding the
lowest possible time. In practice, the robots will not always travel in this best possible direction.
Therefore, we find another lower bound using a baseline lawn mower algorithm. We assume that
this baseline algorithm knows the tightest rectangle that is guaranteed to contain the ROI. The
axis of the rectangle is aligned with the direction of translation of the ROI. Given R robots, we split
this rectangle into R smaller ones. We can split this rectangle either along its length or its breadth.
The exploration time will be different in each case. We find the time required to cover each smaller
rectangle using a lawn mower strategy in both cases and take the lower one. We also ignore the
time required for the robots to go from the starting position to the smaller rectangles. This is
clearly a lower bound for any online strategy that does not know the size of the ROI. Nevertheless,
we find that the exploration time for our algorithm is comparable to this lower bound.

Each case was obtained from 100 randomly generated trials (see Figures 7 (b–d)). Figure 7 (b)
shows that the expected exploration time for all cases is proportional to the number of cells in the
grid ROI. The difference between the maximum and minimum costs as well as that between the
upper bound and the cost of the algorithm also becomes larger as more ROI cells are to be explored.

15



(a) Example of the randomly generated
ROI over grid cells. The red dot repre-
sents the starting vertex for robots.

(b) Plot of the cost when changing the number of
ROI cells.

(c) Plot of the cost when changing the number of
robots.

(d) Plot of the cost when changing the speed ratio
between the robot and the ROI.

Figure 7: Simulation results. We fixed the number of ROI cells, the number of robots, the speed
ratio as 120, 20, 2.5, respectively, when the corresponding variable was not a subject to be changed.
We ran 100 trials for each case. Each case is plotted as mean, maximum and minimum values from
100 trials.

The cost of our algorithm is closer to the lower bound than the upper bound which becomes even
more pronounced as the number of cells increases.

Figure 7 (c) plots the exploration time when changing the number of robots. Not surprisingly,
the exploration time of our algorithm and the lower bound decrease as the number of robots
increases. The upper bound depends on dmax. As a result, the upper bound does not decrease as
much as the other curves since dmax can be high for randomly generated maps. Regardless, we find
that our algorithm performs better empirically than what is given by the theoretical upper bound.

Figure 7 (d) shows the exploration time when changing the speed ratio between the robot and
the ROI, i.e., Sr

Sp
. The exploration time for our algorithm and the upper bound decrease as the speed

ratio increases. We also observe that the difference between upper and lower bounds decreases as
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the speed ratio increases.
The simulation results verify the theoretical upper and lower bounds determined by our analysis.

In addition, they demonstrate that the practical performance of our algorithm is better than that
indicated by the upper bounds. We observe that the practical performance is closer to the lower
bound than the upper bound.

7 Field Experiment

In this section, we conduct proof-of-concept experiments using a single UAV equipped with a
downward-facing camera to monitor a stationary region of unknown size and shape. The goal
of the field experiment is to show how the proposed algorithm can be implemented on an actual
robot and can be deployed in the field for online exploration although limited to the single robot
case. In a practical implementation, there are a number of design choices that must be made (e.g.,
what altitude to fly? how to convert the camera images into cell measurements? how to deal with
erroneous sensor measurements?). In this section, we answer these questions in the context of our
system.

Our environment to be mapped is a 92m × 21m long runway which serves as a proxy of the
ROI. Figure 8 shows hardware details of the UAV and the snapshot of the environment. The UAV
has ODROID-XU4 single-board computer which runs Ubuntu 16.04 with ROS Kinetic [51]. The
onboard software controls the UAV, communicates with GoPro HERO4 camera over WiFi to read
sensor information, and detects the runway.

(a) UAV platform. (b) Runway (92m× 21m) to be explored.

Figure 8: Experimental setting.

Our planning strategy consists of two modes: (1) lawn mowing and (2) the single-robot version
of Algorithm 1. The input to the lawn-mowing mode is a bounding box that is guaranteed to
contain at least some part of the runway. In the lawn-mowing mode, the UAV sweeps the bounding
box. As soon as the UAV observes a part of the runway, the UAV switches to the recursive DFS
algorithm.

Once in the recursive DFS mode, we discretize the environment into grid cells. The grid is
aligned with the UTM coordinates [52]. The origin of the grid is placed at the starting location of
the UAV. Note that the grid is not aligned with the runway (Figure 8 (b)) and the location, shape,
and size of the runway are not given to the UAV a priori.

Each cell is of size 4m×4m. We use the onboard GoPro images to determine if a cell corresponds
to the runway. Each image is divided into 3 × 3 regions (Figure 9). The size of a grid map cell
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(4m×4m) corresponds to the footprint of the center region in the image when flying at an altitude
of 12m. The center and the top, left, bottom, and right regions in the image (refer to Figure 9) are
used to determine if the current cell and its four neighbors in the grid map contain the runway or
not.

Figure 9: Example of our sensing model using a single image that contains both the runway and
the grass region. The left image is the thresholded image. The right image shows the detection
result indicating the percentage of black pixel values printed on the grid cells (colored in red in
four neighboring cells).

Each image is first converted into grayscale and thresholded (at the intensity value of 150).
Then, the thresholded image is dilated (7 times) so that the gaps in the grass region are filled in
(refer the left image in Figure 9). Consequently, the entire grass region becomes filled with white
pixels and the runway region mostly comprises black pixels. Then the percentage of black pixels in
the individual regions is calculated, for each highlighted neighbouring region in the figure. Finally,
we produce a binary classification result based on if this percentage is above or below a threshold.

Our classifier may not give a correct detection result due to a number of reasons. First, it may
produce false positives and false negatives. Second, the detection result is sensitive to the intensity
threshold value we set. Third, even if the UAV is on top of the current cell, the camera may point to
a wrong cell due to pitch and roll used to counter wind disturbance and imperfect flight controller.
Lastly, the change in the sunlight condition might produce noisy measurements. Therefore, instead
of relying on a single image, we use five images per cell. If three of these images mark a cell as
containing the runway, we treat it as a positive detection. When mapping a region, we care more
about the completeness of exploration rather than the efficiency. Therefore, we make the following
conservative design choices. If a cell is marked as containing the runway, it will never be reversed
later on, even if a future measurement taken from some other location yields the opposite detection.
On the other hand, if a cell is marked as not containing the runway and a subsequent measurement
suggests otherwise, we will mark it as a positive runway detection.

The measured flight time of the UAV with a single battery is approximately 12 minutes, which
is not enough for finishing the exploration task. Therefore, we designed our software in a way to
keep track of its previous computation even after replacing the battery. To do that, the software
stores the information of the generated tree (i.e., the status of vertices and the tree structure) and
feeds that to the next flight in order for the UAV to start from the vertex visited last in the previous
flight.

Figure 10 shows the result of the runway exploration experiment. We flew the UAV at a nominal
speed of 1m/s and the ambient wind speed was approximately 3.6m/s. The total flight time was
1 hour and 13 minutes and consisted of six battery replacements. The final tree contained 143
vertices.

The final grid map overlaid on Google Earth is shown in Figure 11. The percentage of the area
of intersection between the ground-truth and the final map, normalized by the area of their union,
was 75.7%.
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(a) Snapshot at time 2 minutes. (b) Snapshot at time 26 minutes and 40 sec-
onds.

(c) Snapshot at time 1 hour and 13 minutes.

Figure 10: Experimental result. The blue square line represents the ground truth of the runway
to be explored that is unknown initially. The red line denotes the trajectory of the UAV. The size
of each cell is 4m × 4m and gray, white, black and green colors represent unknown, non-runway,
unexplored runway and explored cells, respectively. The total flight time taken to completely
explore the entire runway was 1 hour and 13 minutes, consisting of six battery replacements. The
video is available at: https://youtu.be/ZTpPb0C4Lk0.

We also compute the false-positive and false-negative detection rates. Out of the total 483
detections, 27 were false positives and 53 were false negatives. Note that all but two cells that gave
false-negative detections, eventually gave a positive detection. As a result, the final map (Figure 11)
has only two cells that are incorrectly mapped as not being part of the runway. The cells that are
just outside the boundary, however, are incorrectly mapped as being part of the runway. This is
likely because of our conservative exploration choice of marking a cell as containing the runway
even if a single detection is positive.

In summary, we present how our algorithm handles real-world issues and can be implemented
on actual robots. We show the efficacy of the proposed scheme through field experiments.
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Figure 11: Resultant boundary of the runway region (i.e., the boundary of the grid map) plotted
on Google Earth colored in blue.

8 Conclusion

We propose a recursive DFS algorithm for a team of aerial robots to explore a translating ROI
without knowing its size and shape. We present two approaches for the given problem where the
first approximates the ROI to map to the grid whereas the second considers any arbitrary shape of
ROI as long as it is fat. Both approaches are competitive with respect to the optimal algorithm.
We demonstrate the performance of our algorithm through proof-of-concept deployment to map a
stationary ROI.

One of the practical concerns not modeled by our system is that robots, especially UAVs, have
limited battery lifetime. As such, we would like to devise algorithms that can map the ROI subject
to the limited battery lifetime constraint. In particular, in our formulation, we restrict the UAV
to fly at a fixed altitude. However, one may be able to extend the coverage range by flying at
higher altitudes. An interesting and relevant extension of this work would be to plan in 3D space
as opposed to 2D.
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[45] M. Dynia, J.  LopuszaŃski, and C. Schindelhauer, “Why robots need maps,” in International
Colloquium on Structural Information and Communication Complexity. Springer, 2007, pp.
41–50.

[46] A. Preshant, K. Yu, and P. Tokekar, “A geometric approach for multi-robot exploration in
orthogonal polygons,” in Workshop on Algorithmic Foundations of Robotics (WAFR), 2016.
[Online]. Available: http://www.wafr.org/papers/WAFR 2016 paper 25.pdf

[47] S. Das, D. Dereniowski, and C. Karousatou, “Collaborative exploration by energy-constrained
mobile robots,” in International Colloquium on Structural Information and Communication
Complexity. Springer, 2015, pp. 357–369.

[48] N. Megow, K. Mehlhorn, and P. Schweitzer, “Online graph exploration: New results on old
and new algorithms,” Theoretical Computer Science, vol. 463, pp. 62–72, 2012.

23

http://www.wafr.org/papers/WAFR_2016_paper_25.pdf


[49] J. Petrich and K. Subbarao, “On-board wind speed estimation for uavs,” in AIAA Guidance,
Navigation, and Control Conference, 2011, p. 6223.

[50] Z. A. Algfoor, M. S. Sunar, and H. Kolivand, “A comprehensive study on pathfinding tech-
niques for robotics and video games,” International Journal of Computer Games Technology,
vol. 2015, p. 7, 2015.

[51] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng,
“Ros: an open-source robot operating system,” in ICRA workshop on open source software,
vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[52] Wikipedia contributors, “Universal transverse mercator coordinate system —
Wikipedia, the free encyclopedia,” 2019, [Online; accessed 29-April-2019]. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Universal Transverse Mercator
coordinate system&oldid=891899172

24

https://en.wikipedia.org/w/index.php?title=Universal_Transverse_Mercator_coordinate_system&oldid=891899172
https://en.wikipedia.org/w/index.php?title=Universal_Transverse_Mercator_coordinate_system&oldid=891899172

	1 Introduction
	2 Related Work
	3 Problem Description
	4 ROI Exploration over a Grid Map
	4.1 Recursive DFS Algorithm for a Grid Map
	4.2 Theoretical Analysis

	5 ROI Exploration over an Arbitrary ROI Shape
	6 Simulations
	7 Field Experiment
	8 Conclusion

