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GM-PHD Filter for Searching and Tracking an
Unknown Number of Targets with a Mobile Sensor

with Limited FOV
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Abstract—We study the problem of searching for and tracking
a collection of moving targets using a robot with a limited
Field-Of-View (FOV) sensor. The actual number of targets
present in the environment is not known a priori. We propose
a search and tracking framework based on the concept of
Bayesian Random Finite Sets (RFSs). Specifically, we generalize
the Gaussian Mixture Probability Hypothesis Density (GM-PHD)
filter which was previously applied for tracking problems to
allow for simultaneous search and tracking with a limited FOV
sensor. The proposed framework can extract individual target
tracks as well as estimate the number and the spatial density
of targets. We also show how to use the Gaussian Process (GP)
regression to extract and predict unknown target trajectories in
this framework. We demonstrate the efficacy of our techniques
through representative simulations and a real data collected from
an aerial robot.

Note to Practitioners—This paper is motivated by search-and-
rescue operations where a robot with limited FOV is used to
search and track lost targets. The paper presents an estimation
and planning framework to estimate the position of targets and
track them over time. The key feature of the proposed algorithm
is that it can deal with an unknown and varying number of
targets. The framework can also deal with an unknown motion
model for targets which itself can be complex. The algorithm is
shown to be robust to a poor initialization and can handle an
initial belief which overestimates or underestimates the actual
number of targets. The proposed scheme includes various user-
defined parameters. It is recommended to tune these parameters
a priori using simulations for a better performance. Incorpo-
rating a multi-robot approach into the proposed algorithm and
finding a better planning strategy that minimizes the time are
potential future works.

Index Terms—Search and tracking, Random Finite Set (RFS),
Probability Hypothesis Density (PHD) filter, robot sensing system

I. INTRODUCTION

WE study the problem of searching for and tracking a
set of targets using a robot with a limited FOV sensor.

This problem is motivated by robotic search-and-rescue [1],
[2], surveillance [3], crowd/traffic monitoring [4], [5], and
wildlife habitat monitoring [6]–[8]. We specifically consider
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the scenarios where the number of targets being searched is
not known a priori. The targets may move during the search
process and the motion model of the targets is not known
exactly. As the targets are mobile, the robot is also tasked
with tracking the target trajectories.

Search and tracking problems can be loosely distinguished
depending on whether or not a target is in the FOV: tracking
when targets are in the FOV, and search when targets are out
of the FOV. Once all targets are observed by sensor platforms,
the search task is accomplished. To successfully conduct the
tracking task, the states of targets must be estimated at each
time and trajectories of individual targets must be maintained
over time. A robust tracking technique must be able to deal
with clutter (false positive) measurements which is especially
challenging since the true number of targets is not known.

Several techniques have been proposed to unify the search
and tracking problems [1], [9]. These include the sequential
Monte Carlo filter [10], [11] as well as the Probability Hy-
pothesis Density (PHD) filter [4]. However, the existing works
focus on estimating the number of targets and their spatial
densities but cannot estimate trajectories of individual targets.
On the other hand, there are existing works on estimating indi-
vidual target trajectories but assuming an unlimited FOV [12].
Our main contribution is to generalize tracking algorithms for
unlimited FOV sensing to the case of limited FOV. We also
show how to extend tracking to unknown motion models by
leveraging a GP regression [13] based on the prior work in [4],
[14].

Our framework handles both linear and non-linear trajec-
tories of the target and does not require prior model about
the motion model. The two main contributions of this paper
are (i) a new mechanism that explicitly addresses a limited
FOV and mobility of sensor in the GM-PHD framework for
simultaneous search and tracking problems; and (ii) integration
of GP regression in the GM-PHD framework to deal with
unknown motion models of targets. In addition, owing to the
GM-PHD, our method can also estimate and track an unknown
and varying number of targets, and is robust to false positives
by exploiting the hierarchical structure.

A preliminary version of this work was presented at the
International Conference on Robotics and Automation [15].
This paper improves on the proposed algorithm with a con-
ceptually simpler design, a new update rule (Equation (11)),
more extensive simulations, and new experimental results.

The rest of the paper is organized as follows. We begin by
introducing related work in Section II followed by describing
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a problem setup in Section III. We present a brief introduction
to the GM-PHD filter in Section IV. Our proposed algorithm is
presented in Section V. We present results from representative
simulations and experiments in Section VI before concluding
with a discussion of future work in Section VII.

II. RELATED WORK

Search and tracking with robot teams can be useful in
many high impact applications such as disaster recovery,
habitat monitoring, surveillance, and patrolling. Murphy et
al. [16] gives an overview of robotic technology applied to
search and rescue during disaster recovery. References [17]–
[19] have proposed various strategies for search and rescue
response with robots. Robots can be used to collect data that
will be useful for biologist and policy-makers from wildlife
habitats by searching and tracking for biological phenomena
of interest [6], [8], [20], [21]. Patrolling requires a single or
a team of robots to move around in a known environment to
search and track intruders and possibly capture them [22]. In
the rest of this section, we survey existing search and multi-
target tracking algorithms and show how they are related to
the proposed work.

Search techniques have been applied to a broad range
of problems (e.g., [23]–[29]). Miller et al. [27] investigated
planning strategies to drive a robot to a desired position for
search theory. Chung and Burdick [28] proposed a decision-
making approach to find the optimal control for searching.
Ryan and Hedrick [29] presented an information-theoretic
approach to minimize entropy during search. Hollinger et
al. [30] proposed an approximation algorithm that finds multi-
robot search path planning in a known environment. The recent
survey by Chung et al. [31] gives a comprehensive summary
of the search problem.

For the multitarget tracking problem, various research di-
rections have been proposed on the basis of the Hungarian
method [32], [33] which solves data association in polynomial
time. Two canonical algorithms are Joint Probability Data
Association (JPDA) [34] and Multiple Hypothesis Tracking
(MHT) [35]. These techniques have been applied to many
problems including human following [36], object tracking [37]
and human-robot interaction [38]. However, JPDA requires
solving the data association problem which is especially costly
when the actual number of targets is not known exactly
[12]. Conventional Bayes trackers use a vector representation
in which the order of the targets and its size is known
and fixed. This makes tracking with an unknown number of
targets intractable. In [39], the Extended Kalman Filter (EKF)
simultaneous localization and mapping algorithm handles a
varying number of targets but does not represent an explicit
distribution over the number of targets. However, the PHD
filter [40] that we use in this paper avoids these problems
with the help of random set representations [41].

Dames et al. [42] adopted the PHD filter for a finite
FOV sensor to estimate the position of hidden objects. Their
approach, however, is based on a discrete grid map whereas
we use a continuous representation. They use a binary sensing
model where the output of the sensor is 1 only if the sensor

detects one or more targets (including false positive ones) in
a grid cell. If multiple targets are present in a cell, the sensor
will still report 1. In contrast, we consider a sensor that reports
the position of all targets separately.

There are several approximations of the PHD filter since
solving the PHD recursion exactly is difficult. These approxi-
mations include the Sequential Monte Carlo PHD (SMC-PHD)
filter [43] and the GM-PHD filter. The SMC-PHD filter is
based on the particle filtering approach, and thus, it requires
clustering of particles in order to interpret target states. Dames
et al. [4] exploited the SMC-PHD for localizing and tracking
an unknown number of targets but their framework does not
extract individual tracks of targets and this has been extended
to a multi-robot version in Dames [44]. We use the GM-PHD
that makes it more convenient to extract individual targets.
The Cardinalized PHD (CPHD) filter generalizes the PHD
by propagating the distribution of the cardinality, i.e., the
number of targets [45]. Mahler [46], [47] pointed out that the
CPHD has O(m3n) complexity while the PHD has O(mn)
complexity, where n is the current number of targets and m
is the current number of measurements, although the CPHD
yields a smaller variance in the cardinality distribution [48].
The GM-PHD is more intuitive for multitarget tracking since
each component can refer to one target or a cluster of targets.
This makes the planning process easier (e.g., we use the
components to design two simple control laws to guide the
robot).

Wasik et al. [49] employed the GM-PHD for multi-robot
formation control considering a limited FOV sensor. However,
they used the standard PHD filter without any modification
with limited FOV sensing. Instead, we present a new approach
(described in Section V-B) and show through simulations that
this results in a better performance (Section VI-A). Further-
more, their work assumes a known state transition model for
robots whereas we learn the model using GP regression.

The outputs of the GM-PHD filter are stacked at each
time step as a set of tracks (we discuss with more details in
Section V). According to Mahler [46], the PHD is more likely
JPDA than MHT in spirit as the association between the PHD
components and tracks takes place in the current time step,
whereas MHT considers the possible whole history of track.
For track maintenance, a few temporal association schemes
have been proposed: Lin et al. [50] proposed the peak-to-track
association as a two dimensional assignment problem; Panta
et al. [51] presented the track-to-estimate association based on
the SMC-PHD; and the GM-PHD-based track-to-estimate as-
sociation was proposed by the same authors in Reference [52].
In this work, we adopt the temporal association proposed by
Panta et al. [52].

III. PROBLEM DESCRIPTION

We study the problem of finding and tracking the unknown
and varying number of targets of interest moving in an
environment using a robotic sensor with a limited sensing
range. We consider a scenario where the number of targets
present in the environment is not known a priori. Initially,
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only an estimate of the number of targets and a probability
distribution over their initial spatial locations is given. The
actual number of targets may be different.

We assume that all targets move independently of each
other, and that their motion models are not necessarily known
to the robot. We allow for targets to move on a non-linear
trajectory, however, we assume that the trajectories be smooth
(in the sense, that will become clearer in Section V-B). The
robot has an onboard sensor capable of detecting the location
of targets that are in the sensor’s FOV. If the target is not
present in the FOV, then it does not generate any measurement.
However, if a target is present in the FOV then it is detected
by the robot with probability pD. If the target is detected,
then the sensor returns a measurement of the position of the
target. We assume that the measurement noise is additive and
Gaussian with known covariance. In addition, at any time
step, the sensor may also generate false-positive measurements
uniformly at random in the FOV.

We present an estimation framework based on the concept
of RFSs to deal with the search and tracking problem. The
proposed method can estimate the states of targets and the
number of targets at the same time, and initiate and terminate
tracks. Throughout the paper, we present illustrations and
simulations assuming that the environment is 2D and obstacle-
free, and the robot has a circular FOV. However, the proposed
techniques easily extend to more complex scenarios.

IV. PRELIMINARIES

In multitarget-multisensor tracking, Recursive Bayesian Es-
timation (RBE) has been a canonical tool to estimate target
states from observations obtained by imperfect sensors. A
standard assumption is that the number of targets is known
exactly. Hence, we can treat the positions of all the targets at
any time as a random vector and use RBE for estimation.
We consider scenarios where the number of targets itself
is not known. Hence, standard RBE techniques that use a
vector representation cannot directly be used since there is
uncertainty on the length of the random vector itself making
the Bayesian updates intractable.

Mahler [40] developed the PHD filter to tractably solve
exactly this class of problems. The PHD, also known as the
intensity function, when integrated over any subset of the
environment yields the expected number of targets present
in that subset.1 The advantage of the PHD is that it allows
estimation of both target states and the number of targets
simultaneously without the necessity of data association. We
briefly discuss the PHD filter next but refer the reader to
Reference [46] for an in-depth discussion.

The PHD is the first-order statistical moment of RFS and
denoted by v. We denote the multitarget posterior density by
pk|k(X|Zk), where X is a multitarget state set (xi ∈ X is a
state of the i-th target) and Zk is an observation set (zj,k ∈ Zk
is the j-th measurement at time k). The robot state is denoted
by y. pk|k(·) takes all previous measurements into account.

1The PHD is not a probability density function, meaning that the integral
over the entire region of the PHD does not necessarily sum to 1.

The expected number of targets in any region S defined over
the domain of X is:∫

|X ∩ S|pk|k(X|Zk)δX =

∫
S

vk|k(x)dx, (1)

which is the integral of the PHD over S.
Similar to a Kalman Filter, RBE with the PHD consists of

a prediction step followed by an update step. The prediction
and update equations of a PHD are given by vk|k−1(x) :=
vk|k−1(x|Zk−1) and vk|k(x) := vk|k(x|Zk), respectively, for
notational convenience. The prediction equation [47] is:

vk|k−1(x) =

∫
pS(w)fk|k−1(x|w)vk−1|k−1(w)dw+∫
ωk|k−1(x|w)vk−1|k−1(w)dw + βk(x),

(2)

where pS(·), fk|k−1(·|·), ωk|k−1(·|·) and βk(·) denote the
probability of survival of existing targets, the Markov tran-
sition density, the intensity of spawning new targets from
existing targets and the intensity of birthing targets. The update
step [47] is:

vk|k(x) =[1− pD(x, y)]vk|k−1(x)+∑
z∈Zk

pD(x, y)gk(z|x)vk|k−1(x)

c(z) +
∫
pD(w, y)gk(z|w)vk|k−1(w)dw

,
(3)

where pD(·), gk(·|·) and c(·) denote the probability of the
detection, the sensor likelihood and the intensity of clutter (i.e.,
false-positive measurements). The probability of detection de-
pends on the FOV of the sensor as well as the state of targets.
The sensor likelihood is given by the likelihood of obtaining a
position measurement with additive zero-mean Gaussian noise
with known covariance. Clutter and the predicted multitarget
RFS follow the Poisson model [53].

The PHD filter propagates the intensity recursively over
time through Equations (2) and (3). The details of the deriva-
tion of the PHD recursion are given in Reference [40].

Fig. 1: The GM-PHD filter with 7 Gaussian components.

Performing exact prediction and update by the general
PHD recursion is computationally intractable. Instead, particle



4

filter-based approaches [43] and Gaussian mixture-based ap-
proaches [12] have gained attention for the realization of the
PHD. The particle PHD is suitable for dealing with nonlinear
motion of targets. The GM-PHD, however, assumes that a
target has a linear motion model. Nevertheless, we can use
the EKF and unscented Kalman filter versions of the GM-
PHD [12]. The GM-PHD gives a closed-form solution without
requiring a large sample size and clustering techniques to
extract multitarget state estimates, which both are necessary
for the particle PHD.

In a GM-PHD, the intensity function (i.e., the PHD) is
approximated as a Gaussian mixture model of one or more
Gaussian components (Figure 1) and can be expressed as:

v(x) =

n∑
i=1

w(i)N (x;m(i), P (i)), (4)

where n is the number of Gaussian components and each
Gaussian component is represented by its mean (m), covari-
ance (P ), and weight (w). We drop “Gaussian” from “Gaussian
component” for simplicity from now on. The weight of a
component gives the expected number of targets generated as
a result of that component.2 According to Vo and Ma [12],
the GM-PHD prediction equation is:

vk|k−1(x) = vS,k|k−1(x) + vβ,k|k−1(x) + γk(x), (5)

where vS,k|k−1(·), vβ,k|k−1(·) and γk(·) correspond to the
GM-PHD of survival, spawn and birth RFSs, respectively. The
GM-PHD update is:

vk|k(x) = (1− pD)vk|k−1(x) +
∑

z∈Zk

vD,k(z), (6)

where vD,k(·) is the GM-PHD induced from the sensor
likelihood. We refer the reader to Reference [12] for a de-
tailed discussion of the GM-PHD. Figure 2 presents the state
propagation for targets and a robot over time.

Fig. 2: Time framework of RBE for targets and a robot. We
use y to denote the state of robot. The true state is denoted
by (·) while the estimated state is denoted by (̂·). u and a
correspond to the control input of a component and sensor,
respectively.

2Note that the weight of a component does not correspond to the expected
number of components but the expected number of targets. This implies a
component might contain more than a target in it. If w � 1, then the expected
number of targets in that component can be considered as 0.

V. GM-PHD SEARCH AND TRACKING ALGORITHM

In this section, we define our main algorithm for GM-
PHD based search and tracking (GM-PHD SAT). Throughout
the paper, we use the terms component, target and track
frequently. These are defined based on three layers in a
hierarchical order (Figure 3). The core algorithm of GM-PHD
SAT works in the lowest layer, i.e., Layer 1, consisting of
the components of the posterior GM-PHD. Each component
is specified by its weight, mean and covariance. Among these
components, those with a large weight can then be extracted
and considered as targets of interest in Layer 2. Components
that are not extracted as targets can be viewed as tentative
targets. In Layer 3, trajectories of targets are extracted as
tracks that include the history of targets over time. Each track
is assigned an ID which is maintained over time. Components
and targets, however, do not have IDs. Note that separation
of targets in Layer 2 and tracks in Layer 3 is robust to false
positives because targets extracted from components may be
falsely identified while a robot relies entirely on tracks that
survived over a period of time steps. Figure 3 gives a more
in-depth picture of the hierarchical layers.

Fig. 3: Hierarchical layers of the proposed scheme. The x
marks of Layer 1, the circle marks of Layer 2 and the square
marks of Layer 3 denote components, targets and tracks,
respectively. While Layer 1 and Layer 2 show components
and targets obtained at the current time k, Layer 3 presents
tracks that contain their histories from previous time steps.
A robot in the right figure utilizes information of Layer 3 to
carry out the search and tracking task.

Figure 4 describes the overall flowchart of the proposed
algorithm. We start with an initial estimate of the PHD.
Multitarget Bayes filter, i.e., the prediction and update steps,
is applied recursively to estimate the state of targets based on
a limited FOV. Since the PHD is employed, additional data
association between targets and measurements is not required.
The pruning and merging scheme reduces components with
low and similar weights, respectively. Then, multitarget state
estimates are extracted from the GM-PHD and used for main-
taining trajectory states of targets. Finally, an active control
strategy is used to the robot to search for and track the targets.

The structure of the flowchart is similar to Reference [52]
where the GM-PHD was adopted for multitarget tracking;
however, there are key improvements we make to the frame-
work that distinguish it from prior work. Specifically, we show
• how to extend the GM-PHD to allow for a limited FOV

mobile sensor (Section V-B);
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• how to use GP regression to predict unknown motion
models of the targets (Section V-B);

• extracting and managing tracks of individual targets (Sec-
tion V-F); and

• two heuristic strategies for actively controlling the robot’s
state (Section V-G).

In the following, we describe each block in details.

Fig. 4: Flowchart for the GM-PHD search and tracking algo-
rithm.

A. Initialization

The initialization block produces a set of components that
constitutes the initial GM-PHD representing the initial belief
of targets. To conduct a search mission, initial belief for
possible locations of lost targets can be defined a priori
from external sources. Examples of external sources include:
mayday signals from missing crews in disaster scenarios [1],
abandoned dangerous elements in security missions [54],
unknown transient radio sources from the sensor network
deployed by enemies [55] and high-frequency radio signals
from tagged animals for monitoring wildlife habitat [21]. If we
know the region where a target may be present, we construct
a component covering the region. Nearby components can
be clustered into a single component having the weight that
corresponds to the summed weight of combined components.

The possible number of targets in any components reported
by external sources can be expressed by the weight. The initial
GM-PHD may be an underestimate or an overestimate of the
true number of targets. We evaluate the consequence of three
different cases (including the exact estimate) for the initial
belief in simulations.

B. Recursive Bayesian Estimation

The RBE block takes the prior GM-PHD and produces the
posterior GM-PHD as output. At the first time step, the prior
GM-PHD comes from the initialization block. In subsequent
time steps, the prior GM-PHD comes recursively from the
posterior components of previous time steps. The RBE block
performs the prediction and update steps. We follow a similar
procedure as that proposed by Vo and Ma [12] (see Table 1
in Reference [12]) with suitable modifications to account for
a limited FOV sensor. Algorithm 1 shows the pseudo-code for
RBE.

Algorithm 1: RBE
Step 1: A prediction for birth components. Apply a

simple linear motion model as proposed in
Step 1 of Table 1 from Reference [12].

Step 2: A prediction of existing components. Apply
the GP regression over confirmed tracks.

Step 3: A construction of PHD update components
(Step 3 of Table 1 from Reference [12]).

Step 4: An update.
Require: The number of predicted components.

1: for i ∈ {1, ..., nk|k−1} do
2: Compute p(F)(i) using Equation (10).
3: Compute p(i)D using Equation (9).
4: The no detection event: w(i)

k|k = (1− p(i)D )w
(i)
k|k−1 and

P
(i)
k|k = P

(i)
k|k−1.

5: if thresholdlower ≤ p(i)D ≤ thresholdupper then
6: Apply Equation (11) to the mean of the i-th

component.
7: else
8: m

(i)
k|k = m

(i)
k|k−1.

9: end if
10: end for
11: for z ∈ Zk do
12: The detection event: refer to the update part with

respect to measurements in Step 4 of Table 1 from
Reference [12].

13: end for

The prediction equations (Steps 1 and 2 of Algorithm 1)
need a motion model for the components. Rather than assum-
ing a known motion model (e.g., linear), we use GP regression
to estimate a motion model in a data-driven fashion. The PHD
prediction requires knowing the motion model, fk|k−1, for
each of the targets. In previous works, a simple linear motion
model was applied [12]. Instead, we aim at dealing with an
unknown motion model by using GP regression [13] which is a
non-parametric, Bayesian, and non-linear regression technique
which requires specifying a kernel function. In our previous
works, we have shown how GP regression can be employed
to learn the spatial velocity vectors of targets for a real-world
taxi dataset [4]. Here, we employ GP regression to extrapolate
each target’s trajectory and predict its future positions.

Noisy measurements of the state of the targets are fed
as input to GP regression, which produces a prediction of
its future positions. In particular, we use GP regression to
estimate D functions, fdk where d = 1, . . . , D, that predicts
the evolution of the state of the target along each of its D
dimensions as a function of time, independently.

We use the squared exponential function [13] as our kernel.
The squared exponential kernel is a function of only the dis-
tance between two inputs. Therefore, the squared exponential
kernel for two input times, k and k′, is:

K(k, k′) = σ2
f exp

[
− 1

2

(k − k′
λ

)2]
, (7)

where σ2
f > 0 is the signal variance and λ > 0 is the
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lengthscale. The hyperparameters (σf and λ) for the kernel
are learned offline using a training set consisting of noisy
observations of the target’s motion.

In order to apply GP regression to predict the motion of
each Gaussian in the GM-PHD, we must have a confirmed
track of individual targets (it will be explained in Section V-F).
If a Gaussian is not assigned to a confirmed track, then we
can use a simple linear motion model for the prediction.
Once a track is confirmed (i.e., we have sufficient history of
an individual target trajectory), we employ GP regression to
predict its motion.

For any confirmed track, let Md be the history of mean
values of components along the d-th dimension. Let K be
the set that records the time steps corresponding to the mean
values. The following equation gives the predicted mean at
time k for each corresponding confirmed track along the d-th
dimension:

md
k = K(k,K)[K(K,K) + σ2

nI]−1Md. (8)

Here, σ2
n is the variance of the measurement noise which is

also a hyperparameter learned from the data.
It might be time-consuming to perform GP regression online

because the GP prediction has cubic complexity in the length
of history of the confirmed track [13]. Thus, we do not use
the entire history but only a recent subset.3

Figure 5 shows an example of the 2D case and the result
of GP regression applied to a trajectory sample. From a
distribution obtained from GP regression, future trajectory
mean position with covariance can be extrapolated.

The update of predicted components has two parts: compo-
nents with the no detection event (lines 1-10 of Algorithm 1);
and components compared with all measurements observed
in the corresponding time step (lines 11-13 of Algorithm 1).
The no detection event reflects the possibility of target lost
by not assigning any measurements to each component. Thus,
the computation complexity for the update is Θ(|X||Z + 1|).
We incorporate a limited FOV sensor in the update equations.
Specifically, we show how to compute the probability of
detection (i.e., pD) that explicitly considers the limited FOV
of the robot.

Without loss of generality, we assume that the robot has a
circular FOV with a radius of r and centered at a 2D robot state
y = (yx, yy), ignoring the altitude of the robot, whose domain
is the same as that of component. We define two events: F
denotes an event of a target inside the FOV; and D is an event
for a target being detected by the robot. The probability of
detection is:

pD := p(D|F)p(F), (9)

where p(D|F) is a probability of a target being detected given
that it is inside the FOV of the robot, which characterizes
the performance of sensor [12]. For example, in case of the
radar sensor, p(D|F) corresponds to the probability of having
a radar intensity that is above a certain detection threshold

3For example, when using the GPML toolbox [13] implemented in MAT-
LAB, it took 0.29, 0.35, and 3.53 seconds to compute Equation (8) when
the length of the history was 100, 1000, and 5000, respectively.

when a target exists [46]. p(D|F) can be determined experi-
mentally through a calibration procedure or the manufacturer’s
datasheet.
p(F) is a probability of having a target inside the FOV and

is given by:

p(F) =

∫ ymax

ymin

∫ xmax

xmin

1

2πσxσy
√

1− ρ2
exp

( −1

2(1− ρ2)

×
[ (x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ(x− µx)(y − µy)

σxσy

])
dxdy,

(10)

where µ and σ are the mean and standard deviation of a com-
ponent. The integral is over the 2D domain of a component’s
state bounded by the circular FOV where xmin = yx − r ≤
x ≤ yx+r = xmax and ymin = yy−

√
r2 − (x− yx)2 ≤ y ≤

yy +
√
r2 − (x− yx)2 = ymax. ρ is the Pearson correlation

coefficient. Depending on how far components are located
away from the robot, Equation (9) naturally encodes the
amount of influence that the robot affects each component; a
component that is far away from the robot barely gets updated.

In the case of a no-detection event, the PHD values inside
the FOV decrease more than those outside the FOV. We can
see from Line 4 of Algorithm 1, the weights of the components
centered in the FOV will decrease significantly whereas those
that are centered much farther from the FOV will barely
decrease. In our testing, we found that this adversely affected
components that were centered near the boundary of the
FOV. Line 4 of Algorithm 1 reduced the weights of these
components more than desired which caused components that
corresponded to true targets to be pruned away in future
steps. Therefore, we propose a specific treatment for such
components (Lines 5–7 of Algorithm 1).

Existing components that are located near the boundary of
the FOV (i.e., pD lies between thresholds) get pushed outside
the FOV in case of a no-detection event. That way, we may
be able to prevent components that correspond to true targets
from being pruned. As the states of these components can
be corrected later if measurements for them are made, this
treatment is the trade-off between estimation accuracy and
robustness for false-negative errors. The following limited FOV
update rule only updates those components which have a pD
between thresholds:[

µx

µy

]
=

[
pD(µx − yx) + µx

pD(µy − yy) + µy

]
. (11)

This attribute can also be considered as a counter-effect
of the update step that is being used in general Bayesian
filters; targets are attracted by the robot in the detection event
whereas targets are repulsed in the no-detection event. As a
result, RBE produces a set of posterior components through
the prediction and update based on a limited sensing capability.
As our simulation results show, this additional step improves
the performance of the estimator.

C. Pruning/Merging
The pruning/merging block takes a set of posterior GM-

PHD components as input from the RBE block and produces
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(a) Predicted trajectory with the interval along x–
axis.

(b) Predicted trajectory with the interval along y–
axis.

(c) Predicted trajectory in 2D generated by
covariance ellipses of the GP regression.

Fig. 5: Result of the GP regression applied to a 2D trajectory sample.

a set of the reduced number of GM-PHD components. In
the update step of the GM-PHD SAT algorithm, the number
of components increases rapidly as the combination of all
measurements and existing components is considered at every
time step. Vo and Ma [12] proposed pruning and merging
algorithms to eliminate less important components. We prune
away all components that have weights smaller than a thresh-
old. We recursively find a component having the largest weight
and compute the Mahalanobis distance [56] with respect to
all other components. Then, we merge those which have a
distance less than a threshold and remove them from candi-
dates for the next recursion. We continue the recursion until
either no component is left as candidate or the number of
components meets a threshold that bounds the total number
of components. In the latter case, we prune away components
that are not yet merged. A survived component computes its
weight by summing the weight of merged components. The
mean and covariance are averaged among merged components.

D. Generation of New Components

This block takes a set of reduced number of components
in the GM-PHD and measurements as input from the prun-
ing/merging block and produces a set of GM-PHD components
that come from the pruning/merging block as well as a set of
new components generated from measurements as output.

The proposed algorithm, so far, cannot handle a target that
gets inside the FOV but was not a member of components in
the previous time step. Consider a situation where the initial
PHD underestimates the number of true targets. At some point,
some target that has no components associated with it may
enter the FOV of the robot. When a measurement is obtained,
it is not known if it corresponds to such a target that has no
associated component or if it is a false-positive measurement.
We employ a measurement-driven model proposed by Ristic et
al. [57] for the generation of new components as follows. We
create a new component for every measurement (in addition
to updating existing components with this measurement as
described in the RBE block). A new component has its mean
as the position of the corresponding measurement, its variance
as a measurement noise, and its weight as one because each
measurement corresponds to a single target.

For those newly generated components we can expect the
following three possible consequences. First, if a component
comes from a true target that was not recognized beforehand,
it will survive. The weight of the component would increase
over time as it would have more subsequent measurements.
Secondly, if a component turns out to be a result of false-
positive measurement, it will eventually be pruned away as it
would not have further measurements. Lastly, if a component
is generated from a target that is already assigned to any ex-
isting components, it will merge to the corresponding existing
component.

E. Multitarget State Estimation

The multitarget state estimation block takes a set of GM-
PHD components and produces a set of targets extracted from
a set of components that have weights above threshold as
output.

Up to the previous sections, the lowest layer, Layer 1, was
only considered to propagate components by employing the
GM-PHD filter. It is crucial to extract targets of interest from
the raw components for computational efficiency because the
number of components often becomes large. This is done in
Layer 2. We set an additional weight threshold for components
that survive pruning and merging (Section V-C) to turn into
targets if their weights are above the threshold. Many com-
ponents corresponding to false positive measurements would
survive if the weight threshold is set to a low value. On the
other hand, if the weight threshold is set to a high value,
many components corresponding to actual targets may be
pruned away (i.e., false negatives). A reasonable value can be
selected by conducting controlled calibration simulations to
find the appropriate trade-off between the two aforementioned
outcomes. The weight threshold indicates the tolerance of
accepting components as targets based on their measurement
likelihoods; the higher the maximum likelihood of the true
target, the higher the weight threshold can be set, and vice
versa. This block helps to avoid false-positive targets by not
considering trivial components. Table 3 of Reference [12]
shows an algorithm for the multitarget state estimation.
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F. Track Maintenance

The track maintenance block takes a set of targets as input
and produces a set of tracks for the targets that have survived
over time as output.

It is important to keep the track continuity of the PHD
filter so that the trajectories of individual targets can be
observed and maintained. We achieve the track maintenance
in Layer 3 and take a track-to-estimate approach. Nk tracks
at time k are denoted by Tk = {tik | ∀i ∈ {1, ..., Nk}}.
The i-th track at time k, tik, is represented as: tik =
(x1,1, x1,2, ..., x1,d, . . . , xl,1, xl,2, ..., xl,d, i) ⊆ Rd×l × Z≥0,
where d is the dimension of the target state, l is the life
length of track, and i is a non-negative integer representing the
track ID. Each existing track is associated with targets that lie
within the Mahalanobis distance threshold used in the merging
step (i.e., the gating condition). We generate new tracks with
corresponding IDs if more than one target is associated with
an existing track or if no existing tracks satisfy the gating
condition for targets. The details of the track continuity of the
particle PHD filter and the GM-PHD filter are explained in
References [58] and [52], respectively.

Two types of tracks are defined in Layer 3: tentative track
if l < lThreshold and confirmed track if l ≥ lThreshold.
The mechanism of tentative track and confirmed track filters
out false-positive tracks. One beneficial property (refer to
the Remark 30 in Reference [46]) of using the PHD-based
tracker is a self-gating property; prior tracks are updated by
closer measurements rather than farther ones. Also, each track
consists of a tree structure as multiple targets can be survived
from a single component, which resembles MHT [35]. This
inherently yields a deferred decision-making to infer a correct
history of tree afterward.

G. Planning

The planning block takes a set of tracks generated from a set
of targets that have survived over time as input from the track
maintenance block and produces a control input to the robot.
All the building blocks of the search and tracking algorithm
(Figure 4) described so far focus on estimating the state of
the targets. In this section, we focus on the complementary
problem of actively controlling the state of the sensor so as
to improve the search and tracking process. A number of
approaches have been proposed for active target tracking [59],
target search [6], as well as joint search and tracking [9]. In this
paper, we evaluate two simple strategies that are particularly
suited to the underlying GM-PHD framework. Investigating
better strategies with stronger performance guarantees is part
of our ongoing work.

In the GM-PHD, the mean of the Gaussian is a local
maxima of the PHD (i.e., most likely location to find targets
in the local neighborhood), whereas the variance encodes the
spatial uncertainty of the location of the targets. We evaluate
two control strategies. (i) nearest-Gaussian: drive to
the nearest mean of all Gaussians in the mixture; and (ii)
largest-Gaussian: drive to the mean of the Gaussian
with the largest covariance in the mixture.

Intuitively, the nearest-Gaussian strategy will track
one or more targets for as long as possible, giving good
tracking performance but poor search performance. On the
other hand, the largest-Gaussian strategy will equitably
cover the search region giving good search performance but
possibly poor tracking performance. We evaluate these two
strategies through simulations. There can be a third strategy
that switches between these two behaviors while trading off
search and tracking objectives. We leave the design and
analysis of such a strategy as future work.

VI. SIMULATIONS AND EXPERIMENTS

In this section, we present the simulation results that show
the performance of the proposed algorithm when dealing with
multiple targets. We compare different probabilities of false-
positive detections, with and without considering repulsion
effect in the no-detection event, different initial estimate cases,
and the proposed heuristic planning strategies. We then show
the experimental results that have been performed in an
outdoor environment using a single Unmanned Aerial Vehicle
(UAV). We attach the video that shows how the robot state and
estimated targets’ states change over time in both simulations
and experiments.

A. Simulation Results

We carried out simulations of the proposed algorithm using
MATLAB. Figure 6 shows the simulation scenario, where
there is a single robot with limited FOV and ten stationary
targets in a given environment. The details of the simulation
are given in the caption of Figure 6.

Fig. 6: Simulation scenario. The FOV of the robot is given
by a disk of radius of 25 m. The robot moves at a speed of
0.5 m/s. In the case of lawn mowing, the robot swipes the
whole environment (i.e., 150×150 m square) and returns to the
original position. The robot repeats this three times in 7, 278
time steps. The values we set for parameters are as follows:
pS = 1; p(F) = 0.98; lower and upper thresholds for pD are
0.4 and 0.6; the weight threshold to be extracted as targets is
0.5; lthreshold = 3; the pruning weight threshold is 0.001; and
the merging threshold (i.e., Mahalanobis distance) is 10.
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Probability of false-positive detections 0% 10% 20%
Mean to closest 3.0311 2.3603 2.5529
STD to closest 2.6494 1.9604 2.6242

Mean to second closest 8.2450 7.0569 7.0451

TABLE I: Average Mahalanobis distance of confirmed tracks
compared to true targets for different probabilities of false-
positive detections. All values are computed by averaging
the values of ten true targets. STD stands for the standard
deviation.

1) Probability of false-positive detections: We firstly eval-
uate the case of different probabilities of false-positive detec-
tions (i.e., 0%, 10% and 20%) to verify the robustness of the
proposed algorithm. We generate one false positive detection,
located uniformly at random within the FOV, with the given
probability. The robot follows the lawn-mower path (Figure 7).
Initial estimate has ten components with the average mean
offset of 15 from the true position and the average variance
given by a diagonal matrix with diagonal elements 50. Figure 8
and Table I present the results of the simulation. As the
probability of false-positive detections increases, the estimated
number of both components and confirmed tracks increases
(Figure 8). The summation of weights gives larger estimated
number of confirmed tracks than the number of tracks, with
a larger STD. We conjecture that the summation of weights
tends to overestimate the number of targets, and that the
number of the tracks might be a better estimate of the number
of targets in the GM-PHD framework. The overestimation of
weights is due to our mechanism of generating new com-
ponents (i.e., Section V-D), which assigns a weight of one
to newly generated components. This can be observed when
the probability of false-positive detections is 0% (no false
positives). Average Mahalanobis distance of all true targets
to the closest confirmed track does not show any dependence
on the probability of false-positive detections (Table I).

(a) (b)

Fig. 7: Resultant trajectories at time step 7,287 for (a) lawn
mower and (b) largest-Gaussian strategies when the
probability of false-positive detections of 10% and the exact
estimate are applied.

2) Three types of estimates: Next, we compare three esti-
mates (i.e., under-, exact and overestimate) that are given to
the robot initially. The probability of false-positive detections
is set to 10%. In the underestimate case, the initial belief
of the robot is five targets where there are ten true targets.

(a) (b)

Fig. 8: Estimated number of components (a)/tracks (b) from
the number of components/tracks and by the summation of
weights for different probabilities of false-positive detections.
The plots show the mean and standard deviation obtained from
the values of elements.

Estimate Under- Exact Over-
Mean to closest 3.0930 2.3603 3.3152
STD to closest 2.5537 1.9604 2.2353

Mean to second closest 7.3006 7.0569 7.5527

TABLE II: Average Mahalanobis distance of confirmed tracks
compared to true targets for lawn mower (probability of false-
positive detections is 10%).

On the other hand, the initial belief for overestimate has
fifteen targets. The exact estimate implies that the initial belief
matches with the true number of targets, which is ten targets in
this case. The results in all three cases are similar, as shown
in Figure 9 and Table II, except for the underestimate case
being less consistent than other estimates. We conclude that
as far as the lawn mower is concerned, which covers the entire
environment, an overestimate of initial belief does not degrade
the performance.

(a) (b)

Fig. 9: Estimated number of components (a)/tracks (b) from
the number of components/tracks and by the summation of
weights for different estimate types. All values are obtained for
lawn mower where the probability of false-positive detections
is set to 10%.

3) Effect of Limited FOV Update Rule: In addition, we
verify the effect of the limited FOV update rule (i.e., Equation
(11)) to update components (lines 5-6 of Algorithm 1). For
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this simulation, we chose the exact estimate case, lawn-mower
trajectory, and 10% probability of false-positive detections.
Figures 10 (a)-(d) show that ignoring the repulsion effect
in the update step generates false-negative targets as well
as larger errors in the Mahalanobis distance. We can also
see the difference between components and confirmed tracks;
components tend to overestimate the number of targets due to
their unavailability of preserving a history. Furthermore, we
also computed the Optimal Subpattern Assignment (OSPA)
metric [60], shown in Figure 10 (e). The OSPA metric is
commonly used in the literature as it captures both the state
estimation error and the cardinality error in a consistent
manner. It has two parameters, i.e., p for outlier sensitivity
and c for cardinality penalty. In the simulation, we set p and
c to 2 and 100, respectively, that are the same values used
in Reference [60]. Note that the lower the OSPA, the better
performance. Figure 10 (e) presents the importance of the
limited FOV update rule.

4) Dynamic targets: Figure 11 presents the result of the
lawn mower when the targets are dynamic. The targets are
designed to move in a straight line and change their moving
directions randomly at every 400 time steps. The targets move
at a speed of 0.05 m/s, which is one tenth of the robot speed.
If the targets reach the environment boundary, then they pick
a random direction that keeps them within the environment.
The GP regression presented in Section V-B is applied to
predict the state of each target without knowing its speed
and moving direction. As compared with Figures 10 (a) and
(c), it can be seen that there is no pronounced difference in
the estimated number of targets and a slight increase in the
Mahalanobis distance error (2.3603 vs. 3.1570 in case of the
closest confirmed track) for moving targets. Therefore, the
performance for the moving-target case is comparable to the
stationary-target case using the proposed metrics.

5) Heuristic planners: Lastly, we compare the lawn mower
with the largest -Gaussian strategy. We have pro-
posed two heuristic planning approaches in Section V-G; the
nearest-Gaussian strategy, however, is not compared in
simulation due to its desire to stick to the closest target.
Instead, we show how the planning strategies can affect all
targets of interest. In particular, we study the benefit of an
adaptive strategy, albeit a heuristic, over the non-adaptive lawn
mower. We set the probability of false-positive detections to
10%. Figure 7 shows the resultant trajectories after applying
two strategies. Figure 12 implies that the advantage of using
largest-Gaussian over lawn mower is that a smaller
worst covariance among all confirmed tracks is achievable.
Even though largest-Gaussian has a better exploration
ability than nearest-Gaussian, since the lawn mower
explores the whole environment, the lawn mower estimates
higher number of targets than largest-Gaussian, as
shown in Table III. Depending on the trade-off between the
search and tracking objectives, we may be able to adaptively
select one of these planning strategies, or a combination of
the two.

Estimate Under- Exact Over-
Number of Lawn mower 10 7 8

tracks Largest-Gaussian 3 7 5
Sum of Lawn mower 13.3769 18.8052 19.6354
weights Largest-Gaussian 11.3125 14.1745 13.0396

TABLE III: Estimated number of tracks from the number of
tracks and by the summation of weights for lawn-mower and
largest-Gaussian strategies (probability of false-positive
detections is 10%).

B. Experiments with Real Data

We carried out outdoor experiments using UAV equipped
with a single downward-facing camera that detects targets of
interest that are located on the ground for proof-of-concept.
Figure 13 shows hardware details of UAV and the snapshot of
the field environment. The UAV has Intel NUC (NUC7i7BNH)
which runs Ubuntu 16.04 with ROS Kinetic [61]. The onboard
software controls the UAV, reads sensor information, and
detects targets. Five stationary AprilTag markers [62] were
used as stationary targets in a 30m× 24m environment. The
UAV flying at an altitude of 8m that yields a circular FOV
of a radius of approximately 7.5m. We chose the lawn-mower
strategy with a width of 8m to search for and track targets.

Figure 14 plots the measurements observed by the cam-
era and the trajectory of the UAV after going to the end
of the environment and coming back to the origin. The
positions of the UAV and targets were obtained based on
the Universal Transverse Mercator coordinate system. The
measurements were noisy because we did not deliberately
calibrate the camera. We also discarded IDs obtained from
AprilTag measurements to make them identical so that the
resulting sensor lacks data association. We did this to evaluate
the robustness of the proposed algorithm. The initial estimate
has zero components. Figure 14 shows the final confirmed
tracks. In Figure 15 the UAV started detecting a component at
time step 114. We observe that the UAV detected 5-6 targets
most of the time with reasonable Mahalanobis distance. This
demonstrates the robust performance of the algorithm with
noisy real-world data.

VII. DISCUSSION AND CONCLUSION

Our main contribution in this paper is to extend the GM-
PHD filter, initially proposed for the tracking problem [12],
to allow for search and tracking with a limited FOV robot.
Our second contribution was to incorporate unknown target
prediction using GP regression. The current form is restricted
to a 2D environment and a circular FOV but this can be
extended to higher dimensional environments and any shape
of sensing models by appropriately modifying Equation (10).

We employed the PHD filter and extended the framework to
take into account the finite FOV of a mobile sensor. The GM-
PHD filter uses a simpler representation (Gaussian mixtures)
than the original PHD. Recently, a number of filters have
been proposed that estimate the number of targets as well
as the state/track of individual targets, unlike the GM-PHD,
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(a) Estimated number of targets with the lim-
ited FOV update rule.

(b) Estimated number of targets without the
limited FOV update rule.

(c) Average Mahalanobis distance of all true
targets to the closest confirmed track with the
limited FOV update rule.

(d) Average Mahalanobis distance of all true
targets to the closest confirmed track without
the limited FOV update rule.

(e) OSPA (when c = 100 and p = 2) with
and without the limited FOV update rule.

Fig. 10: Comparison between with and without the limited FOV update rule. The true number of targets is ten.

such as the Multi-Target Multi-Bernoulli (MeMBer) filter [63]
and the δ-Generalized Labeled Multi-Bernoulli (δ-GLMB)
filter [64], [65]. The MeMBer filter is more advantageous for
the SMC implementation than the PHD because it allows a
more reliable and efficient way of extracting target states [63].
However, even the cardinality-balanced MeMBer filter [63]
has a similar performance in terms of mean and variance
estimate to the GM-PHD under the high signal-to-noise ratio
condition. As opposed to the PHD and MeMBer in which
track maintenance is not inherent, δ-GLMB directly estimates
the state of tracks by using the labeled RFS. δ-GLMB is also
robust to missed detections that significantly reduce the weight
of corresponding targets in the PHD framework. Due to high
complexity of δ-GLMB, many approximation algorithms have
recently been developed [66], [67]. These filters can be a
more promising estimator/tracker to the proposed problem.
Extending the current approach for limited FOV sensor to
these methods is an important avenue of future work.

The immediate future work is to incorporate better planning
algorithms. In our previous work on particle PHD filters [4],
we defined information-theoretic measures to control the posi-
tion of the robots. Such approaches can directly be applied to
the GM-PHD case. Another possible direction is to incorporate
the ridge-walking algorithm [55] which plans a tour of level
sets in the spatial distribution of the targets. However, this

algorithm assumes that the targets are stationary and would
thus need to be generalized to handle mobile target distri-
butions. A decentralized version of Monte Carlo search tree
proposed by Best et al. [68] can also extend the proposed
work to consider multi-robot online planning if reasonable
metrics for the objective functions can be found. Another
future work is to study the effect of hyperparameter selection
on the performance of the proposed method.
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