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Abstract

In robot planning, tasks can often be achieved through multiple options, each consisting of several

actions. This work specifically addresses deadline constraints in task and motion planning, aiming to

find a plan that can be executed within the deadline despite uncertain planning and execution times.

We propose an effort allocation problem, formulated as a Markov decision process (MDP), to find such

a plan by leveraging metareasoning perspectives to allocate computational resources among the given

options. We formally prove the NP-hardness of the problem by reducing it from the knapsack problem.

Both a model-based approach, where transition models are learned from past experience, and a

model-free approach, which overcomes the unavailability of prior data acquisition through reinforce-

ment learning, are explored. For the model-based approach, we investigate Monte Carlo tree search

(MCTS) to approximately solve the proposed MDP and further design heuristic schemes to tackle NP-

hardness, leading to the approximate yet efficient algorithm called DP Rerun. In experiments, DP Rerun

demonstrates promising performance comparable to MCTS while requiring negligible computation time.
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I. INTRODUCTION

Imagine a scenario where a bus leaves from the station in 30 minutes. There are multiple

routes to the station, but it is not known exactly how long each route will take, and even the

computation times for determining the exact motions needed to execute each route are unknown

a priori. Similarly, imagine you are a chef and need to serve a meal in 15 minutes, which

requires a pot. There is a nearby pot at the bottom of a large stack of dishes such that retrieving

it involves taking out several other objects, while taking out another pot located far away does

not involve taking out any other objects. In such scenarios, we need to reason about how long

each option will take to execute, combined with how long it will take to even find an executable

plan.

Even without deadlines, the above planning problems are challenging for robots, particularly

when the planning horizon is long, as finding a solution generally involves searching in high

dimensions with significant depth and branching factors. Task and motion planning (TAMP)

introduces abstractions—such as passing through a particular intersection in the bus example

and picking up a dish in the meal preparation example—defined at the symbolic level. These

abstractions do not specify how the robot can realize low-level motions (i.e., trajectories or

motor commands) to achieve these abstract actions, allowing for planning in the abstract space

and avoiding the search complexity of the low-level motion space. However, such planning is

generally done without full knowledge of how long it will take to translate an abstract action

into a fully executable sequence of low-level commands.

Introducing the deadline constraint to TAMP problems induces an additional problem of

scheduling computation allocation among candidate abstract plans. An abstract plan, referred

to as a plan skeleton, corresponds to a sequence of abstract actions. The TAMP problem and

computation selection may be interleaved, with computation selection determining which abstract

plan the planner must consider and affecting the probability of finding a solution within a

deadline. Essentially, computation selection can be viewed as metareasoning to effectively solve

deadline-constrained TAMP problems.

In this work, we introduce a Markov decision process (MDP) formulation that involves metar-

easoning for computation selection in deadline-constrained TAMP problems. The introduced

problem is inherently stochastic, as exact motions are unknown a priori before computation,
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resulting in stochastic planning and execution times. To address this stochasticity, we explore both

model-based and model-free approaches. The model-based approach involves learning transition

models when data on past planning experience is available, while the model-free approach is

used when such data is unavailable.

We additionally show that the proposed metareasoning MDP problem is NP-hard, proven by

reduction from the knapsack problem. To alleviate the complexity of the problem, we employ the

Monte Carlo tree search (MCTS) scheme to approximately solve the problem and further propose

heuristics that exploit the structure of an optimal policy, which can be solved in polynomial time

at the expense of optimality. However, in experiments, we show that the problem restricted by

heuristics yields solutions that are comparable to those from the original problem while greatly

improving efficiency.

Our main contributions can be summarized as follows:

• We propose a deadline-aware TAMP formulation that leverages metareasoning perspectives.

To the best of our knowledge, our work is the first to address time-critical scenarios in TAMP.

• We formally prove the NP-hardness of the proposed metareasoning problem and design a

polynomial-time approximate algorithm, called DP Rerun, through heuristics.

• Furthermore, we investigate approximately solving the metareasoning problem using MCTS

and employing reinforcement learning when data is not available a priori.

• We test both navigation and manipulation scenarios to evaluate the effectiveness of the pro-

posed method, DP Rerun, in practice. We find empirically that it significantly outperforms

baselines in experiments. In particular, DP Rerun takes significantly less computation time

to achieve performance almost on par with MCTS.

The rest of this paper is organized as follows. Section II introduces related work on TAMP

and metareasoning. Section III presents our metareasoning formulation as an MDP problem. The

hardness of the proposed problem is derived in Section IV. Model-based and model-free solution

methods are introduced in Sections V and VI, respectively. Section VII illustrates the practical

use cases of the proposed method in navigation and manipulation domains. Section VIII presents

the experimental results, and concluding remarks are included in Section IX.
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II. RELATED WORK

Here, we review the related literature on task and motion planning, resource-constrained

planning, and metareasoning to highlight the overlooked challenges addressed in this work.

A. Task and motion planning

TAMP problems involve manipulating multiple objects in the world, requiring reasoning about

where to grasp an object, where to place it, and robot motion commands [1, 2]. TAMP planners

introduce symbolic abstractions that reason primarily about objects to separate out low-level

motion planning. Essentially, TAMP exhibits a bilevel structure: high-level task reasoning (i.e.,

determining which actions to take) and low-level motion reasoning (i.e., determining how to

execute these actions) mutually provide complementary guidance.

Existing TAMP planners can be generally classified into three approaches [1]. The satisfy-

before-sequence approach [3, 4, 5] involves finding a valid assignment of values to contin-

uous variables that satisfy the corresponding constraints. Subsequently, the sampled values

are sequenced to generate a complete plan executable by the robot. On the other hand, the

sequence-before-satisfy approach [6, 7, 8, 9, 10, 11, 12, 13] reverses the search process by first

computing abstract plans that do not involve reasoning about continuous variables, followed by

finding satisfying values for those variables. An alternative approach is interleaved-satisfy-and-

sequence [14, 15, 16, 17], whereby a search tree is constructed to jointly search for satisfying

values for both discrete and continuous variables in an interleaved manner.

Two main directions have been actively pursued in the community to advance the state of

the art in TAMP research: (1) focusing on improving planning efficiency and (2) developing a

learning framework to acquire models for TAMP planners from data, rather than relying solely on

hand-designed models. Several ideas have been proposed to enhance planning efficiency, such as

novel heuristics for informed search control [5, 18, 13], learning samplers for effectively handling

continuous variables [19, 20], value function learning to estimate the contribution to reaching a

goal [16], and feasibility prediction to mitigate the failure of expensive motion planning [21, 22,

23, 24, 25]. TAMP planners require models, such as symbolic models and skills, to effectively

find a solution. Data-driven model learning efforts for TAMP include skill learning [26, 27, 28,

29, 30], world model learning [31, 32], and predicate learning [33].



5

As such, most TAMP research has focused on efficiently and effectively finding a satisfying

plan, while little has addressed optimal planning [34, 35, 36]. To the best of our knowledge,

no previous work has tackled deadline-aware planning in TAMP. This work introduces the first

deadline-aware TAMP formulation, highlighting the distinctive challenges posed by stochastic

planning and execution times, as well as the allocation of computation among available options.

B. Resource-constrained planning

In robot planning, it is often essential to consider resource constraints to adhere to limited

time or energy budgets, given that a robot’s operational lifetime is finite. Various forms of these

constraints have been explored in the literature [37]; here, we only discuss representative classes

of problems.

Prize collecting traveling salesman problem [38] is a variant of the well-known traveling

salesman problem. Its goal is to visit a subset of vertices from a given graph in a way that

minimizes both the traveling distance and the net penalties associated with collecting prizes

and penalties. Another related class of problems is the orienteering problem [39, 40, 41],

whose objective is to maximize the reward collected until a given budget is exhausted. Various

algorithms have been developed, including the recursive greedy algorithm [39], which offers

a provable approximate guarantee. Multi-armed bandit problems [40] involve maximizing the

expected return when dealing with a finite number of arms associated with unknown black-

box reward functions. When only a fixed number of trials is allowed, resource constraints are

considered, making the exploration-exploitation dilemma critical.

Although both the problems introduced in this subsection and the problem proposed in this

work address bounded resources, the introduced problem includes a unique structure that makes

it distinctive, thereby necessitating the consideration of metareasoning. Specifically, the problem

involves two interconnected subproblems: one is the original problem of solving a given TAMP

problem, and the other is the metareasoning problem of scheduling computation allocations

among options to meet a deadline. We provide more detailed explanations on the connection to

metareasoning in the following subsection.
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C. Metareasoning

Rational metareasoning [42] has been investigated in the context of developing intelligent

agents under constraints of bounded resources, with two early proposed equivalent models:

anytime algorithms [43] and flexible computation [44]. In this subsection, our focus is on the

planning-related literature. Several more comprehensive surveys can be found in the literature [45,

46, 47, 48].

The value of computation is a critical concept in metareasoning, calculated as the improvement

of solution quality resulting from a computation, subtracted by the computationally incurred

costs [44]. Since this value is difficult to compute, how to approximate the value of computation

has become a subject of research. Moreover, the improvement of solution quality in reality is

often uncertain. Therefore, monitoring and control schemes have been proposed to effectively

handle stochastic solution quality improvement [49, 50, 51, 52].

One constructive application of metareasoning for planning is to determine the optimal mo-

ment to stop planning and begin executing a computed plan through interleaved planning and

execution [53, 54]. This approach is particularly valuable when the reasoning procedure exhibits

anytime behavior, allowing the agent to achieve a higher-quality plan by investing more time in

planning despite incurring greater costs, such as energy consumption. Therefore, monitoring the

progress of plan quality improvement is crucial for establishing a stopping policy that effectively

balances solution quality and computation time.

Metareasoning has also been employed in robotics problems, such as cost-effectively stopping

for optimal motion planning [55] and handling exceptional situations to ensure the safety of

autonomous driving [56].

Another related constructive use case is to select which computation to utilize when multi-

ple computations are available under limited computational resources. Metareasoning has been

extensively applied to find the optimal computation among various alternatives. Hay et al. [57]

adopted metareasoning in the selection phase of MCTS to determine which future sequences to

simulate and compared it with bandit settings. Lieder et al. [58] developed a theory for algorithm

selection by metareasoning to model human strategy selection. Callaway et al. [59] proposed a

learning algorithm for approximating the optimal selection of computations.

Our work also involves computation selection considered as metareasoning. However, there
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are two notable features in our work that distinguish it from the aforementioned literature.

First, we address deadline-aware planning, meaning that the total duration of selected sequential

computations must meet a deadline, whereas existing work treats each selected computation as

a separate time-critical problem. This fundamental difference prevents the proposed work from

utilizing the conventional notion of the value of computation. Second, our work considers TAMP

as an object-level problem, which has not yet been addressed in the literature.

The most related work to ours is by Shperberg et al. [60], where they explored a metareasoning

problem within the domain of situated temporal (symbolic) planning [61], a planning paradigm

that considers the time elapsed during plan search while also accounting for a pre-specified

deadline. They abstracted the problem of searching for plans into a meta-level scheduling

problem, bypassing the complexities of plan state representation and search procedures. Their

approach involved modeling the problem using a set of processes, each dedicated to searching

for a plan, akin to representing search nodes on an open list. Each process is characterized

by a probabilistic performance profile, modeled by a random variable indicating the probability

of successful termination given processing time, as well as a random variable modeling the

deadline corresponding to each partial plan, which is only revealed after planning is concluded.

The meta-level problem lies in finding an optimal schedule of processing time across all pro-

cesses that maximizes the probability that any process delivers a plan before its deadline. A

simplified version of this problem, known as “simplified allocating planning effort when actions

expire,” assumes discrete time intervals and has been proven to be NP-hard. However, under the

condition of known deadlines, the problem becomes solvable in pseudo-polynomial time through

dynamic programming. Later, this line of work was extended to consider interleaved planning

and execution, where partial plans can be executed during the search [62, 63]. While this body

of work bears relevance to our research, it primarily concentrates on deriving symbolic plans. In

contrast, our focus lies in elaborating existing symbolic plans through motion-level reasoning to

make them executable for a robot, optimizing the likelihood of meeting a pre-specified deadline.

III. PROBLEM FORMULATION

Consider a robot that can interact with objects in the world. Its configuration space is repre-

sented by Q, and its space of grasps is represented by G, corresponding to a space of the 6D

pose of the end-effector in SE(3), the grasp preshape, and the approach direction [64].



8

We assume that the world is composed of a finite set of objects O = OF ∪ OM , where

fixed objects OF include objects such as floors, walls, tables, and shelves, and movable objects

OM include objects such as cups, books, and keys that are movable by the robot. A subset of

fixed objects OF , such as tables and shelves, is endowed with workspace regions in R3, where

movable objects can be placed. The space of poses for movable object i in OM is denoted by

Pi, representing stable placements in the workspace regions.

The composite state space of the robot and objects is represented by Q×G×
∏M

i=1 Pi, where M

denotes the number of movable objects. Each variable corresponding to a state space component

is referred to as a typed variable, which includes a robot configuration q ∈ Q, a grasp pose

g ∈ G, and the pose pi ∈ Pi of each movable object i. The state is then a tuple of continuous

values assigned to the concatenation of these typed variables.

We assume deterministic transitions as a result of actions and error-free perception. Despite

these restrictive assumptions, TAMP planning remains computationally intractable, as the un-

derlying problems of task planning [65] and motion planning [66, 67] have each been proven

to be PSPACE-complete. Our aim is to establish an initial solution as foundational for future

efforts aimed at relaxing these assumptions. However, we introduce novel challenges regarding

imperfect knowledge in this work, where planning time and execution time of an action are

unknown, which are crucial for addressing deadline-aware planning.

We now recap a general TAMP formulation [1], a planning framework that finds a sequence of

actions to achieve a certain goal, without considering deadlines. We then broaden the problem

description to include effort allocation for finding a TAMP solution that can be planned and

executed within a pre-specified deadline.

A. TAMP formulation

The TAMP formulation often leverages a logic-based action language, such as planning domain

definition language (PDDL [68]), to enable high-level symbolic planning for efficient low-level

motion planning [12]. We define a TAMP problem as a tuple ⟨O,P , I,G,∆⟩ as follows:

• O denotes a finite set of objects introduced previously.

• P denotes a finite set of predicates, where each predicate is a Boolean function that can be

evaluated on a tuple of object variables o ∈ O and typed variables to determine whether

it is true or false. An assignment of values to a predicate is called a literal. For example,
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InRegion(oi ∈ OM , of ∈ OF , pi ∈ Pi) is true if the movable object oi with pose pi is

in the workspace of the fixed object of , InHand(oi ∈ OM , g ∈ G) is true if the movable

object oi is stably grasped by the robot with grasp pose g, and Reachable(q ∈ Q, q′ ∈ Q)

is true if there exists a collision-free path between configurations q and q′. Notice that the

motion planning aspect is addressed through the evaluation of predicates containing typed

variables, while task planning deals with discrete variables representing objects.

• I denotes a set of initial literals. For ease of presentation, we also refer to a tuple of literals

and the state of typed variables as a state. Therefore, I along with assigned values of typed

variables describe the initial state of the world.

• G denotes a conjunctive set of goal literals.

• ∆ denotes a finite set of actions, whose arguments are tuples of object variables and typed

variables. Each action δ ∈ ∆ is described by a set of literal preconditions pre(δ) and a set

of literal effects eff(δ). We use + and − as superscripts on pre and eff to represent positive

and negative literals, respectively. An action with an assignment of values is applicable

to a state if pre+(δ) ⊆ I and pre−(δ) ∩ I = ∅. The successor state becomes a tuple of

I \ eff−(δ) ∪ eff+(δ) along with the values of typed variables assigned in the action.

A solution to the TAMP problem is a finite sequence of actions from the initial state, specified

by the initial literals I, to reach the goal state, satisfying the goal literals G. A partial plan, where

object variables in a sequence of actions in the plan are only determined (often called grounding)

while continuous typed variables are not yet chosen (often called refinement), is referred to as a

plan skeleton [69]. Predicates involving only typed variables, such as Reachable(q ∈ Q, q′ ∈

Q), are always considered true when finding plan skeletons.

Refinement of actions in a plan skeleton, involving the evaluation of Reachable(q ∈ Q, q′ ∈

Q) predicates, finds valid robot motions that satisfy geometric and kinematic constraints, such

as arm motion for grasping a cup and base motion to reach a table. Geometric constraints ensure

that the robot does not collide with any objects in the world or itself at any time, and that no

collision occurs among any pairs of objects. Kinematic constraints govern the degrees of freedom

of the robot and the relationships among links connected through joints.

A finite sequence of valid motions obtained by refinement constitutes a continuous path in Q

that the robot follows from its initial state to reach a goal. Given a specification of the robot’s

motion model, execution time can be computed from the resultant path. Optimal planners aim
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at finding a plan that minimizes the total execution time [34, 35, 36]. However, in this work,

our goal is to identify any plan that can be executed before a deadline, while also taking into

account the planning (or computation) time required to identify it.

In Section VII, we provide example scenarios in navigation and manipulation domains to

demonstrate TAMP problem specifications in practice.

B. Effort allocation for deadline-aware TAMP problems

The TAMP problems introduced above do not take into account the notion of a deadline or

time budget, so their solvers only aim at finding a satisfying plan regardless of the time it takes

to find it. However, in this work, we explicitly address deadline-aware planning, which imposes

an additional constraint ensuring that a plan found must be refinable and executable within a

deadline.

Our work adheres to the sequence-before-satisfy approach [6, 7, 8, 9, 10, 11, 12, 13], often

leveraging AI heuristics, such as Fast Downward [70], to efficiently find plan skeletons initially

without considering continuous typed variables. The search for plan skeletons is then followed

by finding satisfying values for the typed variables.

Since plan skeleton search is generally computationally tractable compared to continuous value

selection, one can first find K plan skeletons to jointly search for continuous values satisfying

constraints, a process referred to as top-K planning [71, 72]. This approach may lead to finding a

solution quickly, as any value selection in some of the plan skeletons may violate the constraints,

and thus, not yield solutions. Top-K plan skeletons can be chosen by introducing either a user-

defined cost or unit cost on every action. In the latter case, K plan skeletons are selected starting

from the smallest number of actions reaching the goal in ascending order.

In this work, we consider a scenario where multiple plan skeletons are provided, but the

planning (or refining) time and execution time of individual actions within the plan skeletons are

unknown. It is important to note that we interchangeably use (motion) “planning” and “elabora-

tion” to mean refinement throughout the paper. Let Σ = {σ1, ..., σk, ..., σK} be a finite set of top-

K plan skeletons. Each plan skeleton σk contains Ak actions, denoted by σk = (δ1k, ..., δ
j
k, ..., δ

Ak
k ),

where δjk denotes the j-th action in plan skeleton σk.

We consider discrete time steps for both planning time and execution time, where the interval

between sequential time steps is determined by a user. Let {1, ..., D} denote a set of decision-
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(1) Problem instance for this ex-

ample. Here, probabilities are rep-

resented in CDF form, where [CDF

probability: time steps required for

planning or execution] is interpreted

as the probability that the planning

or execution takes less than or equal

to the specified time step.

(2) Optimal policy found for this

example. With a slight abuse of no-

tation, values of P and E denote

time steps. Values on the edges de-

note transition probabilities. 3 × δ13

implies selecting δ13 for three time

steps.

(3) A partial representation of the MDP by an expectimax tree generated for

this example.

Fig. 1: Example of an effort allocation problem.
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making time steps, where the planner decides which plan skeleton to allocate one interval of

its time (or effort) to refine a corresponding action, that is, finding satisfying continuous values

of typed variables of the action. Multiplying a user-defined time interval by D yields the total

wall-clock time allotted to the planner, corresponding to a deadline.

To handle unknown planning time and execution time, we propose a learning paradigm

for estimating these quantities using collected data obtained from past experiences. We round

both the planning time and execution time of every action to match with decision-making

time steps and introduce discrete distribution functions to model the uncertainty about these

quantities. Specifically, we define Pj
k, a discrete cumulative distribution function (CDF) modeling

a planning time distribution required to find valid continuous values of typed variables that

satisfy corresponding constraints, and Ej
k a discrete CDF modeling an execution time distribution

required for the robot to execute a motion obtained by the refined action. For convenience,

we define pj
k and ejk as the probability mass functions (PMF) corresponding to Pj

k and Ej
k,

respectively. These PMFs can be computed directly from their corresponding CDFs.

Note that once the planner computes a motion, the execution time to execute the motion can be

obtained deterministically as it depends on the path length. However, before a path is obtained,

the execution time is stochastic. The stochasticity arises from the random process of generating

motions in motion planning.

We finally propose an effort allocation problem, whose objective is to maximize the probability

of finding a fully refined plan skeleton that can be planned and executed by the robot within

a pre-specified deadline, under uncertain planning times and execution times, by learning a

computation allocation policy among plan skeletons.

An example of effort allocation for a deadline-aware TAMP problem instance is illustrated

in Figure 1 (1). In this example, there are three plan skeletons: σ1 = (δ11, δ
2
1), σ2 = (δ12, δ

2
2),

and σ3 = (δ13). Note that σ1 and σ2 share the first action, i.e., δ11 = δ12 . The deadline D is 5

time steps. All actions have the same execution time probability mass function: they finish in 1

time step 50% of the time and in 10 time steps the other 50% of the time. Additionally, in this

example, actions δ21 , δ22 , and δ13 have deterministic planning durations: three steps for δ13 and one

step each for δ21 and δ22 . Action δ11 (or δ12) has a stochastic planning duration, taking either one

or four time steps with equal probability.

The optimal policy in this scenario, depicted in Figure 1 (2) is to first execute the motion
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planner on δ11 (or δ12) for 1 time step. If motion planning has not found a plan, or if it found

a plan requiring 10 time steps for execution, the motion planner then proceeds to refine δ13 for

three time steps. This refinement is guaranteed to succeed; however, the resulting plan can be

executed on time only if the execution time is 1 step (not 10); otherwise, no solution is found.

If δ11 (or δ12) completes planning within 1 time step and discovers a motion plan executable in 1

time step, the motion planner continues to refine δ21 for 1 time step. If this plan can be executed

in 1 time step, a solution is found. Otherwise, the motion planner proceeds to refine δ22 for 1

time step. If the resulting plan can be executed in 1 time step, a solution is found; otherwise,

no solution is found. The overall success probability of this policy is 0.5625. This value can be

extracted from the figure by multiplying the probabilities along each path leading to a leaf node

where a solution is found and then summing the probabilities across these different paths.

In the following subsection, we finalize our problem formulation using the notation introduced

so far.

C. An MDP model

We formalize the effort allocation problem using a Markov decision process (MDP) model,

which can be represented by a tuple ⟨S,A,T,R, D⟩ as follows:

• S denotes a finite set of MDP states, where S = {(CT, l1, ..., lk, ..., lK , PT1, ..., PTk,

..., PTK , ET1, ..., ETk, ..., ETK),success,failure}. Here, CT ∈ N denotes the current

time step. lk ∈ {0, ..., Ak} is an index of the last action in plan skeleton σk that has already

been refined to find a path, where lk = 0 indicates that no actions in the plan skeleton have

been refined yet. PTk ∈ N denotes accumulated time steps spent for planning so far for

action δlk+1
k in plan skeleton σk. PTk maintains accumulated time steps for action δlk+1

k

specifically instead of action δlkk because the planner only needs to keep track of planning

time for unrefined actions. For actions that are refined, the planner has already confirmed

the actual planning times, so refined actions no longer have stochasticity. ETk ∈ N denotes

accumulated time steps that will be spent for execution for all actions refined so far in plan

skeleton σk. success and failure denote the terminal states, where success implies

the successful refinement of one of the K plan skeletons before the deadline, and failure

implies the opposite.
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• A = {a1, ..., ak, ..., aK} denotes a finite set of MDP actions, where MDP action ak selects

plan skeleton σk to spend one time step refining action δlk+1
k .

• T is a transition function, where T(s ∈ S, ak ∈ A, s′ ∈ S) represents the probability

of transitioning from MDP state s = (CT, l1, ..., lk, ..., lK , PT1, ..., PTk, ..., PTK , ET1,

..., ETk, ..., ETK) to MDP successor state s′ = (CT ′, l′1, ..., l
′
k, ..., l

′
K , PT ′

1, ..., PT ′
k, ..., PT ′

K ,

ET ′
1, ..., ET ′

k, ..., ET ′
K) by taking MDP action ak. We define four types of transitions as

follows:

1) CT ′ = CT + 1 with a probability of 1. We add an additional time step for each

decision-making time step.

2) l′m, PT ′
m, ET ′

m = lm, PTm, ETm with a probability of 1 for all m such that δlm+1
m ̸=

δlk+1
k .

3) For action δlk+1
k , a path can be found with a probability of Plk+1

k (PTk +1). For all m

such that δlm+1
m = δlk+1

k , if lm < Ak, then l′m, PT ′
m, ET ′

m = lm +1, 0, ETm + x, where

x ∈ support(elk+1
k )1, with a probability of Plk+1

k (PTk + 1) · elk+1
k (x), or success

otherwise.

4) Alternatively, a path cannot be found with a probability of 1− Plk+1
k (PTk + 1) even

after spending the current time step. In such a case, for all m such that δlm+1
m = δlk+1

k ,

if CT < D, then l′m, PT ′
m, ET ′

m = lm, PTm + 1, ETm, or failure otherwise.

• R is a reward function. The reward is 1 if the transition reaches the success terminal

state, or 0 if it reaches the failure terminal state.

The objective of this MDP formulation is to find an optimal policy that maps each state from

S to an action from A, leading to maximizing the expected cumulative reward.

It is important to note that our formulation does not require assumptions of independent plan

skeletons or downward refinability [73]. Even if an MDP action chooses plan skeleton σk to

refine a corresponding action δlk+1
k , for all m such that m ̸= k but δlm+1

m = δlk+1
k , the MDP

updates the state for plan skeleton σm as well, thereby considering dependent plan skeletons.

Downward refinability implies that plan skeletons are always refinable. However, our formulation

can handle cases where a planning time distribution Pj
k does not always reach 1 even at the

deadline, meaning that not all actions may be refinable. This capability effectively removes the

1The support refers to the subset of the domain of a probability mass function E where the probability measure is non-zero.



15

downward refinability assumption and can address practical scenarios.

An example of the MDP is depicted in Figure 1 (3). The MDP is represented as an expectimax

tree, where the initial state, with no time allocated to any plan skeleton, is the root. Only the first

two levels of the tree are presented. From the root, the available actions are to either attempt

to refine δ11 or equivalently δ12 by an MDP action a1 or equivalently a2, or to try and refine

δ13 by an MDP action a3. If 1 time step is invested in refining δ13 by an MDP action a3, the

motion planner cannot find a plan, resulting in only one successor state where the planning time

for σ3 is increased by 1, with all other values remaining unchanged. If 1 time step is invested

in refining δ11 or equivalently δ12 by an MDP action a1 or equivalently a2, the motion planner

does not finish planning with a probability of 0.5. In this case, the planning time for σ1 and

σ2 is increased by 1 in the resulting state, with all other values unchanged. With a probability

of 0.5, the refinement of action δ11 or equivalently δ12 is completed. Since the execution time of

the refined plan can either be 1 or 10 (with equal probabilities), there are two possible resulting

states. Both states will have l1 = 1, PT1 = 0, l2 = 1, and PT2 = 0, indicating that δ11 or

equivalently δ12 has finished refinement. The first state has ET1 = ET2 = 1, while the second

state has ET1 = ET2 = 10.

We also note that generalization of the proposed problem, making one plan skeleton more

favorable than another even if both meet a deadline, is achievable by designing more complex

MDP specifications. For instance, one could attach literals to MDP states and assign a reward

to specific literals, such as reaching a meeting room before a deadline with a coffee grabbed,

making that occurrence more favorable than merely making a meeting before the deadline.

The effort allocation problem reveals metareasoning perspectives as it allows efficient use of

limited computational resources (i.e., meta-level computation) for finding a solution to the TAMP

problems (i.e., object-level computation). Essentially, the effort allocation problem addresses

when and what to consider, when to stop deliberation, and how to adaptively allocate computation

under a limited computational budget (i.e., deadline).

IV. THEORETICAL ANALYSIS

As shown in the previous section, the effort allocation problem can be formulated as an MDP.

MDPs can be efficiently solved, for instance, using methods like value iteration, which have

polynomial-time complexity with respect to the number of states and actions. However, the
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challenge arises from the number of states in the MDP corresponding to all conceivable time

allocations and their associated outcomes, which grows exponentially with the size of the input

problem.

In this section, we establish that the effort allocation problem is NP-hard, even when the

execution time is known. This finding suggests that addressing this problem necessitates the use

of approximation algorithms or heuristic approaches to yield feasible solutions within reasonable

computational bounds.

Theorem 1: Finding the optimal policy for the effort allocation problem is NP-hard.

Proof: We establish NP-hardness by reducing from the optimization version of the knapsack

problem.

Definition 1 (Knapsack problem [74, problem MP9]): Given a finite set of items S = {s1, ...,

sk, ..., sK}, each with a positive integer weight wk and value vk, and a weight limit W , find

a subset S◦ of S such that the total weight of S◦ is at most W and the total value of S◦ is

maximized.

Without loss of generality, we assume that all the values are greater than or equal to 1.

That is, vk ≥ 1 for all 1 ≤ k ≤ K. We also assume, without loss of generality, that S◦ =

{s1, ..., sm, ..., sM} with M ≤ K.

In our reduction, each plan skeleton represents an item in the knapsack problem. We only

consider degenerate plan skeletons Σ = {σ1, ..., σk, ..., σK}, where each plan skeleton includes

only a single action, and actions do not overlap between plan skeletons. Formally, for all 1 ≤

k ≤ K, σk = (δ1k) and δ1k ̸= δ1m for all k ̸= m. Additionally, we assign a zero execution time for

each plan skeleton, that is, E1
k = 0 with probability 1, and set a deadline D = W .2 Finally, the

planning time CDF P1
k is defined as a piecewise constant function:

P1
k(t) =


0, t < wk,

ϵvk, wk ≤ t ≤ W,

1, W < t.

Here, plan skeleton k has a probability of 0 of completing elaboration and execution before

time wk, a probability of ϵvk of completing elaboration and execution after time wk, and the

probability increases further to 1 after the deadline. Later in the proof, we set a particular value

2The proof can be easily adapted to support any constant execution time.
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for ϵ such that the probability of success of at least one plan skeleton is almost as much as the

sum of the success probabilities of all the selected skeletons.

To prove NP-hardness, we establish bounds on the probability of success, denoted PSUCC(S◦),

for any set of items S◦:

ϵ
∑

sm∈S◦

vm ≥ PSUCC(S◦),

= 1−
∏

sm∈S◦

(1− ϵvm),

> ϵ((
∑

sm∈S◦

vm)− 1).

The first inequality follows from the union bound, stating that the sum of event probabilities,

where the probability of each event for plan skeleton m corresponds to ϵvm, is always at least

as large as the probability of the union of these events, implying that at least one plan skeleton

finishes elaboration and execution.

The last inequality is demonstrated by bounding the higher-order terms when expanding the

product into a sum. Now, let’s proceed with the detailed proof for this inequality. First, we can

derive the following equality using the principle of inclusion-exclusion:

PSUCC(S◦) = 1−
M∏

m=1

(1− ϵvm),

=
M∑

m=1

ϵm(−1)m+1
∑

N⊆{1,...,M},
|N |=m

∏
n∈N

vn.

All the summands in the outer summation with odd m are positive, so if we exclude them

(for all m > 1), the value of the expression does not increase.
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PSUCC(S◦) =
M∑

m=1

ϵm(−1)m+1
∑

N⊆{1,...,M},
|N |=m

∏
n∈N

vn,

≥ ϵ
∑

N⊆{1,...,M},
|N |=1

∏
n∈N

vn −
⌊M

2
⌋∑

m′=1

ϵ2m
′ ∑
N⊆{1,...,M},

|N |=2m′

∏
n∈N

vn,

= ϵ
M∑

m=1

vm −
⌊M

2
⌋∑

m′=1

ϵ2m
′ ∑
N⊆{1,...,M},

|N |=2m′

∏
n∈N

vn.

On the other hand, the number of elements in
∑

N⊆{1,...,M},
|N |=2m′

∏
n∈N vn is

(
M
2m′

)
, which is upper-

bounded by M2m′ . Let H = maxMm=1 vm. Since H ≥ vm for all 1 ≤ m ≤ M , we have

H2m′ ≥
∏

n∈N vn. We obtain the following inequalities using these relations:

PSUCC(S◦) ≥ ϵ
M∑

m=1

vm −
⌊M

2
⌋∑

m′=1

ϵ2m
′ ∑
N⊆{1,...,M},

|N |=2m′

∏
n∈N

vn,

≥ ϵ
M∑

m=1

vm −
⌊M

2
⌋∑

m′=1

ϵ2m
′ ∑
N⊆{1,...,M},

|N |=2m′

H2m′
,

≥ ϵ
M∑

m=1

vm −
⌊M

2
⌋∑

m′=1

(ϵHM)2m
′
.
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By setting ϵ = 1
H2M3 , we obtain:

PSUCC(S◦) ≥ ϵ
M∑

m=1

vm −
⌊M

2
⌋∑

m′=1

(ϵHM)2m
′
,

= ϵ

M∑
m=1

vm − ϵ

⌊M
2
⌋∑

m′=1

ϵ2m
′−1(HM)2m

′
,

≥ ϵ(
M∑

m=1

vm −
⌊M

2
⌋∑

m′=1

(HM)2m
′

(H2M3)2m′−1
),

= ϵ(
M∑

m=1

vm −
⌊M

2
⌋∑

m′=1

1

H2m′−2M4m′−3
),

≥ ϵ(
M∑

m=1

vm −
⌊M

2
⌋∑

m′=1

1

M
),

> ϵ((
∑

sm∈S◦

vm)− 1),

where the second-to-last inequality can be derived from the fact that 1
H2m′−2M4m′−3 ≤ 1

M
, since

H ≥ vk ≥ 1, M ≥ 1, and m′ ≥ 1.

Next, we demonstrate that optimal schedules correspond to optimal knapsack solutions. Let

S◦ be an optimal schedule. We first show that S◦ corresponds to a knapsack solution. Since the

deadline of all plan skeletons is W , the processing time assigned to each plan skeleton sm ∈ S◦

cannot exceed W . Therefore, any plan skeleton assigned non-zero processing time in S◦ receives

time equal to wm. Additionally, the sum of processing times in S◦ is at most W . We use S◦ to

also denote the set of items in the knapsack problem corresponding to the plan skeletons, each

assigned time wm in S◦. The knapsack value of S◦ is V =
∑

sm∈S◦ vm, and since the sum of

weights of the items in S◦ is at most W , S◦ is a knapsack solution.

The remaining proof is to show that S◦ is an optimal knapsack solution. Assume, in contra-

diction, that S◦ is suboptimal as a knapsack solution. Then there must exist a knapsack solution

S+ with value V + ≥ V + 1. Since S+ is a knapsack solution,
∑

sm∈S+ wm ≤ W . Thus, taking

S+ as a schedule (assigning time wm to each plan skeleton sm ∈ S+) creates a schedule where
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all plan skeletons run before time W as well, with success probability:

PSUCC(S+) = 1−
∏

sm∈S+

(1− ϵvm) > ϵ((
∑

sm∈S+

vm)− 1),

≥ ϵ(
∑

sm∈S◦

vi) ≥ PSUCC(S◦),

where the inequalities are due to the previously established bounds. That is, schedule S+ has a

greater success probability than S◦, a contradiction. □

V. MODEL-BASED APPROACH

Solving the proposed MDP-based effort allocation formulation requires access to planning time

distributions and execution time distributions of all abstract actions involved in plan skeletons.

Since these distributions are unknown a priori, we must either learn them from past experiences

or data, or find a way to bypass explicit learning for finding a policy.

To address this challenge, we explore both model-based and model-free approaches. In model-

based learning, we collect data on both planning times and execution times of all abstract actions

taken in the training problems and estimate their distributions. In model-free learning, we utilize

policy optimization from reinforcement learning to bypass distribution learning. We will delve

into the model-free approach in the next section.

Both planning time distribution P j
k and execution time distribution Ej

k are discrete, each

modeled as a categorical or multinoulli distribution with parameter vector θP/E
k,j in the D-simplex,

as each distribution contains D + 1 categories as a support. D parameters are positive real that

sum to 1. The value of D+1 implies non-plannable or non-executable within a deadline, relaxing

the downward refinability assumption explained in Section III-C.

We compute maximum likelihood estimation of θP/E
k,j parameters for all k and j by counting

the number of the corresponding events in the data. Laplace smoothing can also be applied to

make robust estimation if data is sparse.

Using the estimated distributions, we are now prepared to solve the proposed MDP problem.

This problem-solving incurs meta-level computation, where smaller is better as the planner can

allocate its resources more efficiently to object-level computations, corresponding to planning

and execution times. However, as demonstrated in Section IV, optimally solving the proposed

MDP using, for example, value iteration, is computationally intractable. Therefore, we propose

two approximate schemes for efficiently solving the MDP.
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The first approach is approximating value functions via MCTS. The second approach is

to compute the optimal linear contiguous policy, which is a linear policy in which all time

allocations to the same plan skeleton are performed contiguously.

A. Monte Carlo Tree Search

We employ MCTS [75, 76] to handle the exponential increase of states in the proposed MDP,

as shown in Theorem 1. To overcome the curse of dimensionality, MCTS leverages random

episode sampling within a decision tree to approximate an optimal policy that would be found

by an expensive value iteration algorithm.

A decision tree of MCTS when applied to solving MDP problems corresponds to an expectimax

tree, where the tree nodes, starting from the root, are structured as an alternating sequence of

action-choice nodes and probabilistic nodes. The value of a probabilistic node is computed as

the expectation of the values of its children nodes, and the value of an action-choice node is

computed as the maximum of the values of its children. The unique feature of the expectimax

tree constructed for the proposed MDP is that every action-choice node always has K children

nodes, as the action is about determining which plan skeleton to refine among K plan skeletons

regardless of the state being considered, except for terminal states.

Value iteration utilizes the optimal state-action value function Q∗ : S ×A → R, defined as:

Q∗(s, a) = R(s, a) +
∑
s′∈S

T(s, a, s′)V ∗(s′),

where V ∗ denotes the optimal state value function. An optimal policy can then be defined as

π(s) = argmaxa∈AQ(s, a).

On the other hand, MCTS approximates the state-action value function Q using random

simulation. In particular, we adopt the upper confidence bounds applied for trees (UCT [77])

as an MCTS algorithm, which treats action choice as a K-armed bandit problem for choosing

from K plan skeletons and aims to achieve the property that the probability of selecting a sub-

optimal action converges to 0 as the computation time goes to infinity by balancing exploration-

exploitation trade-off. This trade-off is captured in the form of:

π(s) = argmax
a∈A

{
Q(s, a) + C

√
lnN(s)

N(s, a)

}
,
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where N(s) denotes the number of times state s has been visited, and N(s, a) denotes the

number of times action a has been sampled in state s, both in previous iterations. C > 0 denotes

an exploration constant, where an increased value implies encouraging exploration, while a

decreased value implies encouraging exploitation.

We apply a general MCTS framework iteratively running four phases: (1) selection, where a

node in the tree that is not yet explored is selected based on the above UCT criteria, (2) expansion,

where a chosen node is expanded by applying an available action, (3) simulation, where random

actions are applied to the node expanded from the chosen node until it reaches a terminal

state, and (4) backpropagation, where the reward accumulated in the episode generated by the

simulation phase is backpropagated up to the root node. The accumulated reward corresponds

to the number of successful rollouts that meet a pre-specified deadline. The policy quality can

primarily be determined by the allotted MCTS computation time and the number of rollouts

used in the simulation phase.

MCTS is an anytime algorithm, implying that the more computation time is exploited, the

closer the computed policy is to the optimal, and that it can be terminated at any time but still

outputs an answer. This property is desirable as users can determine the meta-level computation

time for their applications at the sacrifice of policy quality. It is worth noting that finding a

sweet spot between MCTS computation time and policy quality can be considered as meta-

meta-reasoning, but we do not delve into this aspect in this work.

B. Heuristics

We introduce two properties that a policy may exhibit as heuristics, which systematically

restrict the solution policy space. This restriction may result in identifying a different optimal

policy than the one found by solving the proposed MDP, thereby forming an approximate

solution, but it significantly facilitates the design of an efficient algorithm. The first property

is linear, and the second property is contiguous.

A linear policy is a pre-determined allocation of time steps to all plan skeletons, which remains

unchanged regardless of the refinement process unless a valid solution is found. The optimal

policy in Figure 1 (2) is not linear, as the decision of which action to allocate time to depends

on the result of the previous allocation (e.g., we cannot know in advance whether action δ21 or

δ13 will be allocated computation time after δ11 or δ12).
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A contiguous policy is one in which all time allocations to the refinement of an action are

performed contiguously, without any other allocations in between. The optimal policy in Figure 1

(2) is contiguous, whereas the linear policy (δ13, δ
1
1, δ

1
3), for example, is not contiguous.

Consider the special case where each plan skeleton consists of only a single action and the

execution times are known. In this case, an action δjk should never be executed if its execution

time plus the current time exceeds the deadline, as it will never lead to a timely solution.

Consequently, there exists an optimal solution that excludes such actions. When considering

policies that only schedule computation actions if they can lead to a timely solution, the result

of each computation allocation to an action δjk is either: (1) a successful elaboration of action δjk,

after which plan skeleton k is fully elaborated and can be executed before the deadline, allowing

the algorithm to terminate; or (2) action δjk is not elaborated. Since only option (2) results in

additional time allocations, the resulting policy is linear. Moreover, linear non-contiguous policies

can be rearranged as contiguous without affecting the probability of success. Thus, in this special

case, there exists an optimal policy that is both linear and contiguous.

While linear contiguous policies are not necessarily optimal in the general case, they can be

computed in pseudo-polynomial time [78]. Consequently, we can compute a linear contiguous

policy and use it as a (potentially suboptimal) solution to the effort allocation problem to

efficiently find a solution.

To compute this policy, we introduce the dynamic programming (DP) scheme defined in

Equation 1. N(k, lk + 1) denotes the index set of plan skeletons that share the action δlk+1
k . For

example, in Figure 1 (1), N(1, 1) = {1, 2} since δ11 = δ12 , and N(3, 1) = {3}. PS represents a

DP state, indicating the probability of successful refinement associated with that state.

Specifically, PS(k, 0, 0, 0) represents the probability that plan skeleton k will be completed on

time under the linear contiguous policy. Equation 1a serves as the termination condition, where

the last action of the plan skeleton δAk
k is being considered for refinement. All possible time

allocations up to the deadline for δAk
k are evaluated, with each allocation using the remaining

time steps before the deadline as execution time, as no further refinement will be needed if

it succeeds. Equation 1b forms the core of the DP scheme. In this case, we again consider all

possible time allocations up to the deadline for the current refining action δlk+1
k (first summation).

For each time allocation, we evaluate all possible execution times for δlk+1
k (second summation).

For each combination of time allocation and execution time, we apply the maximum value of
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PS(k, lk, CT,ETk) =



D−CT∑
t=1

plk+1
k (t) · Elk+1

k (D − t− CT − ETk) if lk + 1 = Ak, (1a)

D−CT∑
t=1

∑
m∈Support(e

lk+1

k )

(
plk+1
k (t) · elk+1

k (m)

· max
k′∈N(k,lk+1)

PS(k′, lk′ + 1, CT + t, ETk′ +m)
) if lk + 1 < Ak. (1b)

the DP states that consider plan skeletons sharing the current action δlk+1
k , while adding the

corresponding current and execution time steps.

We compute the values of PS(k, 0, 0, 0) for all plan skeletons and select the one with the

highest value, indicating the most probable successful refinement. Once the skeleton is chosen by

the DP, it is applied for actual refinement within the available time steps, ensuring the deadline

is met.

To mitigate the linearity assumption of DP, we introduce a variant of the algorithm called

DP Rerun, with the pseudocode provided in Algorithm 1. In this variant, at each decision-making

time step, we first identify a plan skeleton that maximizes PS(k, lk, CT,ETk) (lines 2-6), as done

in DP. However, unlike DP, where the entire available time is allocated to the chosen skeleton,

DP Rerun allocates only a single computational action for refinement (line 7). We then observe

the result: either the elaboration of the corresponding action is completed, providing the execution

time (lines 12, 13), or the elaboration process remains incomplete (line 15). In the latter case,

we update the planning time distribution of the action, accounting for the time spent without

completing the refinement. This process of running DP, selecting actions, obtaining observations,

and updating the distribution continues iteratively until either the problem is solved (line 10)

or the deadline has passed (line 19). Although DP Rerun requires more computation than DP

due to its online replanning behavior, it mitigates the linear policy assumption and yields better

solutions.

VI. MODEL-FREE APPROACH

In the model-based approach introduced in the previous section, we estimate the parameters

of planning time and execution time distributions using maximum likelihood estimation to learn
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Algorithm 1: DP Rerun
Input : CT = 0, l1 = 0, ..., lK = 0, ET1 = 0, ..., ETK = 0

Output: SUCCESS or FAILURE

1 while CT +min{ET1, ..., ETK} < D do

2 Σ.val← ∅

3 for 0 ≤ k ≤ K do

4 Σ.val.append
(
solveDP

(
PS(k, lk, CT,ETk)

))
// Apply Equations 1a

and 1b.

5 end

6 k⋆ ← argmaxk Σ.val

7 refine (σk⋆) // Allocate one time step to refine the k⋆-th

plan skeleton.

8 if isActionRefined (lk⋆ + 1) then

9 if lk⋆ = Ak⋆ then

10 return SUCCESS

11 end

12 lk⋆++

13 ETk⋆ ← ETk⋆ +m // Here, m denotes the actual execution

time derived from the refined action.

14 else

15 updateDistribution (lk⋆ + 1) // Update the planning time

distribution for the action δlk⋆+1
k⋆ .

16 end

17 CT++

18 end

19 return FAILURE

the transition models T in the MDP. This approach requires gathering data offline to fit the

parameters of the distributions to match the data. The learned transition models are then used

to compute a plan-skeleton selection policy for a query problem.
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However, we often face situations where data is not readily available before the deployment

of the robot, yet the robot still needs to learn a selection policy for a query problem without

access to distribution information and improve its policy while repeatedly solving the problem.

This approach essentially describes episodic reinforcement learning. In this context, the agent

operates on the same environment but is unaware of the underlying model (MDP). In this context,

the agent interacts with the same environment but is unaware of the underlying model (MDP).

The only information available to the agent is the state variables and the action space. The agent

learns by observing the current state of the environment, performing an action, and observing

the resulting next state and immediate reward.

In particular, we employ Proximal Policy Optimization (PPO [79]), a prominent variant within

the family of policy gradient methods, due to its desirable properties such as sample efficiency,

stable training, and ease of use. PPO improves on traditional policy gradient methods by using a

surrogate objective function that penalizes large policy updates, ensuring more stable and reliable

learning. This is achieved through techniques such as clipping the probability ratio between the

new and old policies, which prevents drastic changes that could destabilize training. Additionally,

PPO uses mini-batch updates and adaptive step sizes, contributing to its effectiveness and

efficiency in various reinforcement learning tasks.

In policy gradient methods, a policy is parameterized by a neural network that takes an MDP

state as input and outputs an MDP action or a distribution of actions. In our context, the policy

determines which plan skeleton to refine for one time step. The policy network is trained by

deploying the agent in the environment for a finite collection of episodes. During these episodes,

the agent collects sequences of states, actions, and rewards (trajectories), and the model is trained

iteratively using this data.

It is worth mentioning, however, that the proposed reinforcement learning problem is in-

tractable due to sparse rewards. A reward of 1 is received only if the refinement of any plan

skeleton is completed within a deadline, and a reward of 0 is received if it fails, as defined

in the MDP described in Section III-C. Sparse reward problems, especially when the reward is

only obtained at the end of the episode, are notoriously challenging. Without a reward signal

until the episode’s conclusion, it is difficult for the policy to learn which actions were beneficial,

complicating the process of assigning credit and making effective decisions. Moreover, due to

the stringent time deadlines inherent in these problems, exploration-promoting mechanisms like



27

the Intrinsic Curiosity Module (ICM [80]) and Go-Explore [81], which are typically effective

in handling sparse rewards, are unlikely to be viable here. Each action taken for exploration

decreases the probability of meeting the deadline, posing a significant challenge in balancing

exploration against the imperative of timely completion.

VII. EXAMPLE SCENARIOS

In this section, we provide two example scenarios implemented in PyBullet simulation [82]

to demonstrate practical use cases of the proposed method and the specifications of the corre-

sponding TAMP formulations. The first scenario is the navigation domain, where the goal is to

reach a target office through a series of offices with different geometries. The second scenario

is the manipulation domain, where the robot needs to move several objects to the kitchen area

for meal preparation. In both scenarios, the planner must adhere to a pre-specified deadline. We

will present experimental results using these domains in Section VIII-D.

(1) Navigation domain. (2) Manipulation domain.

Fig. 2: Visualization of domains used in the example scenarios.

A. Navigation domain

The visualization of the navigation domain is included in Figure 2 (1), where the target office,

start office, and intermediate offices are depicted. The navigation domain considers only fixed

objects corresponding to individual office rooms, excluding movable objects, thus O = OF .

We only utilize the mobile base of the PR2 to use it as a mobile robot. Therefore, the

configuration space becomes Q ∈ SE(2), specifying (x, y, θ). The planner has access to the
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xy domain of the workspace of each office room and can determine if the robot is located in

the office.

In this domain, four forms of predicates P are used. Their corresponding literals are as follows:

• InRoom(of ∈ OF , q ∈ Q), true if the robot, at configuration q, is within the office room

of .

• Reachable(q ∈ Q, q′ ∈ Q), true if a collision-free path between configurations q and q′

is found.

• AtConf(q ∈ Q), true if the robot is at configuration q.

• CFree(q ∈ Q), true if the robot at configuration q is collision-free with any fixed objects.

InRoom, Reachable, and CFree are constant predicates, while AtConf is a fluent predicate

as its state varies depending on configuration q.

Actions ∆ include a single form, which is move(of ∈ OF , o
′
f ∈ OF , q ∈ Q, q′ ∈ Q). The

preconditions and effects of move are:

• pre: InRoom(of , q), Reachable(q, q′), AtConf(q), CFree(q).

• eff: InRoom(o′f , q
′), ¬AtConf(q), AtConf(q′), CFree(q′).

Here, ¬ denotes a negation symbol.

Application of move implies that the robot transitions from configuration q in office room of

to configuration q′ in office room o′f , and a collision-free path between configurations q and q′ is

obtained as a byproduct of evaluating Reachable. q′ is determined by uniform sampling within

the 2D region of office room o′f . We employ RRT-Connect [83] to compute a collision-free path.

Initial literals I are {InRoom(os, qinit),AtConf(qinit), CFree(qinit)}, where os denotes the

start office room and qinit is the initial robot configuration. Goal literals G are {InRoom(og, q ∈

Q),CFree(q ∈ Q)} for any configuration q where InRoom is true, and og denotes the goal

office room.

There are four plan skeletons Σ = {σ1, ..., σ4} as follows:

• σ1 =
(
δ11 = move(of = R1, o

′
f = R2), δ

2
1 = move(of = R2, o

′
f = R3), δ

3
1 = move(of =

R3, o
′
f = R4), δ

4
1 = move(of = R4, o

′
f = R13)

)
,

• σ2 =
(
δ12 = move(of = R1, o

′
f = R5), δ

2
2 = move(of = R5, o

′
f = R6), δ

3
2 = move(of =

R6, o
′
f = R7), δ

4
2 = move(of = R7, o

′
f = R13)

)
,

• σ3 =
(
δ13 = move(of = R1, o

′
f = R5), δ

2
3 = move(of = R5, o

′
f = R8), δ

3
3 = move(of =
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R8, o
′
f = R9), δ

4
3 = move(of = R9, o

′
f = R13)

)
,

• σ4 =
(
δ14 = move(of = R1, o

′
f = R10), δ

2
4 = move(of = R10, o

′
f = R11), δ

3
4 = move(of =

R11, o
′
f = R12), δ

4
4 = move(of = R12, o

′
f = R13)

)
.

where arguments for typed variables are omitted from actions. Notice that σ2 and σ3 plan

skeletons share the same action move(of = R1, o
′
f = R5).

B. Manipulation domain

Unlike the navigation domain, the manipulation domain includes movable objects OM , as

well as three fixed objects OF = {Worktop,Table,Shelf}, as visualized in Figure 2 (2). Here,

the goal is to move two movable objects, one from the shelf (i.e., B1) and another from the

table (i.e., B2), to the worktop. However, other movable objects are located near B1 and B2,

potentially resulting in a long planning time for directly retrieving B1 and B2, which may not

meet a deadline. Instead, removing nearby movable objects first may be beneficial, as it creates

space and shortens the planning time for grasping B1 and B2.

In this domain, the robot’s configuration space is Q ∈ SE(2)× T7, where SE(2) represents

the configuration for the mobile base of the PR2, as used in the navigation domain, and T7

represents the configuration of the 7 joints of the PR2’s left arm (i.e., 7-dimensional torus). The

pose space of each movable object is Pi ∈ SE(3), specifying rigid body transformations in 3D

space.

More predicates P and actions ∆ are introduced to describe physical interactions between the

robot and the objects. In addition to AtConf introduced in the navigation domain, the literals

of the additional predicates are as follows:

• InRegion(oi ∈ OM , of ∈ OF , pi ∈ Pi), true if the movable object oi with pose pi is in

the workspace of the fixed object of .

• Reachable(q ∈ Q, q′ ∈ Q,∀i pi ∈ Pi), true if a collision-free path between configurations

q and q′ is found with all movable objects at poses pi.

• Grasp(oi ∈ OM , pi ∈ Pi, g ∈ G), true if the movable object oi at pose pi can be grasped

by the robot at grasp pose g.

• Kin(oi ∈ OM , pi ∈ Pi, g ∈ G, q ∈ Q), true if the robot at configuration q, with grasp pose

g, and the movable object oi at pose pi, satisfies a kinematic constraint.
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• InHand(oi ∈ OM , g ∈ G), true if the movable object oi is stably grasped by the robot with

grasp pose g.

• Empty, true if the robot’s hand is empty.

• AtPose(oi ∈ OM , pi ∈ Pi), true if the movable object oi is at pose pi.

• CFree(q ∈ Q,∀i pi ∈ Pi), true if the robot at configuration q is collision-free with all

fixed objects and movable objects at poses pi.

InRegion, Reachable, Grasp, Kin, and CFree are constant predicates, while InHand,

Empty, AtPose, and AtConf are fluent predicates.

The following three forms of actions are used in the manipulation domain:

• move(q ∈ Q, q′ ∈ Q, ∀i pi ∈ Pi)

– pre: Reachable(q, q′,∀i pi), AtConf(q), CFree(q,∀i pi).

– eff: ¬AtConf(q), AtConf(q′), CFree(q′,∀i pi).

• pick(oi ∈ OM , pi ∈ Pi, g ∈ G, q ∈ Q)

– pre: AtPose(oi, pi), Kin(oi, pi, g, q), Empty, Grasp(oi, pi, g), AtConf(q).

– eff: ¬AtPose(oi, pi), ¬Empty, InHand(oi, g).

• place(oi ∈ OM , of ∈ OF , pi ∈ Pi, g ∈ G, q ∈ Q)

– pre: Kin(oi, pi, g, q), InHand(oi, g), AtConf(q).

– eff: InRegion(oi, of , pi), AtPose(oi, pi), Empty, ¬InHand(oi, g).

The move action is similar to the same action in the navigation domain, except that CFree

additionally evaluates collisions with objects. RRT-Connect is used to compute a collision-free

path. pick and place actions involve evaluating Kin to find inverse kinematic solutions, for

which we use IKFast [64]. The pick action evaluates Grasp, where a grasp is sampled with

respect to the tool frame of the PR2. The place action requires sampling a placement pose pi

of the movable object oi in the workspace space of the fixed object of , such as the surface of

the table.

Initial literals I are {AtConf(qinit),Empty,CFree(qinit, ∀i pi,init),InRegion(B1, C1, p1,init),

InRegion(B2, C2, p2,init),InRegion(B3, C1, p3,init),InRegion(B4, C1, p4,init),InRegion

(B5, C2, p5,init),InRegion(B6, C2, p6,init),AtPose(oi ∈ OM , pi,init ∈ Pi), }. Goal literals G

are {InRegion(B1, R1, p1 ∈ P1),InRegion(B2, R2, p2 ∈ P2)}.

Eight plan skeletons, Σ = {σ1, ..., σ8}, are given as input to this domain. We include the
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details of the plan skeletons in Appendix A due to limited space.

VIII. EXPERIMENTS

In the experiments, we primarily evaluate two key questions: (1) How effectively can our

method find a deadline-aware executable plan compared to baseline methods? (2) How efficiently

can our heuristic schemes determine the computation allocation policy compared to approaches

that attempt to solve the proposed MDP, which has been proven to be NP-hard? Both ques-

tions assess our method’s performance as an effort allocation scheduler and its computational

efficiency.

To address these questions, we design several problem instances for case studies to systemat-

ically evaluate the performance of the proposed methods, measured by the statistics of rewards

collected from episodes. We also propose several baselines for effective performance comparison.

The comparative analysis is conducted with all methods aiming to maximize collected rewards

given sufficient computation time. This approach allows us to focus on evaluating the maximum

capacity of each method without the constraint of limited computation time.

To complement the comparison analysis, we present an analysis of the computation time for

the model-based approaches to validate the efficiency improvements introduced by the heuristics

compared to MCTS. Lastly, evaluation results on the example scenarios introduced in Section VII

are shown again under the sufficient computation time regime.

A machine with an Intel Core i7-12700H CPU @ 4.60GHz and 32 GB of memory was used

for the experiments. For MCTS, we set the exploration constant C to 0.5. For PPO, we use a

codebase from OpenAI Spinning Up [84] and include the details of the network architectures

for the actor and critic, as well as the hyperparameters, in Appendix B.

A. Baselines

We design two additional algorithms as baselines to compare with the proposed algorithms.

These baselines are simple and thus expected to perform as lower bounds. The first baseline is

Round Robin, which deterministically chooses a plan skeleton for refinement at each time step

from a pre-specified order among plan skeletons without needing to learn any distributions or

repeat problem-solving. Specifically, Round Robin repeatedly selects from σ1 to σK . The second

baseline is Greedy, which, like model-based methods, needs to learn distributions and always
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(1) Instance 1. (2) Instance 2. (3) Instance 3. (4) Instance 4. (5) Instance 5.

Fig. 3: Problem instances designed for the experiments.

chooses the plan skeleton with the smallest sum of the mean planning and execution times of

all involved actions.

B. Comparison analysis

Figure 3 depicts five problem instances used for comparison analysis. Instance 1 contains

several shared actions, but the mean of planning and execution times is equal for all plan

skeletons. Instance 2 also has the same mean for both plan skeletons, and the distributions are

symmetric but differ in the variance of planning time distributions. Instance 3 contains a shared

action, but the plan skeletons do not have the same mean. Instance 4 is similar to Instance 2

except that the distributions are asymmetric. Instance 5 includes infeasible plan skeletons that

cannot be refined even if all available time steps are dedicated. The deadlines pre-specified for

these five problem instances are 14, 9, 20, 4, and 14, respectively. Histograms of planning time

and execution time for all actions in the five problem instances are provided in Appendix C.

The performance is measured by the 95% confidence interval of the return (or cumulative

reward) over 100 runs in each problem instance. We do not include the approach of solving the

proposed MDP exactly, as its computation time is incomparably greater than all other methods,

making it impractical in practice.

Table I shows the results of all methods across five problem instances, each given sufficient

computation time to attempt their best performance. MCTS performed the best in all instances,

reaching an optimal solution due to the sufficient computation time provided for each iteration of



33

Problem instance 1

Algorithm MCTS DP DP Rerun PPO Round Robin Greedy

Cumulative reward 0.98± 0.02 0.93± 0.05 0.94± 0.05 0.72± 0.09 0.37± 0.09 0.92± 0.05

Problem instance 2

Algorithm MCTS DP DP Rerun PPO Round Robin Greedy

Cumulative reward 0.74± 0.09 0.65± 0.09 0.70± 0.09 0.37± 0.09 0.51± 0.09 0.65± 0.09

Problem instance 3

Algorithm MCTS DP DP Rerun PPO Round Robin Greedy

Cumulative reward 0.71± 0.09 0.35± 0.09 0.67± 0.09 0.25± 0.08 0.59± 0.09 0.34± 0.09

Problem instance 4

Algorithm MCTS DP DP Rerun PPO Round Robin Greedy

Cumulative reward 0.94± 0.05 0.90± 0.06 0.90± 0.06 0.79± 0.08 0.45± 0.09 0.54± 0.09

Problem instance 5

Algorithm MCTS DP DP Rerun PPO Round Robin Greedy

Cumulative reward 0.71± 0.09 0.33± 0.09 0.70± 0.09 0.10± 0.06 0.70± 0.09 0.34± 0.09

TABLE I: Performance comparison among algorithms in five problem instances.

its four phases. DP Rerun achieved the second-best performance with only marginal degradation

compared to MCTS. This result is surprising, as we will show in the next subsection on the

computation analysis between MCTS and DP Rerun, where DP Rerun required only negligible

computation time. The performance of DP was comparable to DP Rerun but worse in instances

3 and 5. This was caused by the potential inability to refine the chosen plan skeleton within

a deadline, highlighting the importance of rerunning the computation at every time step. From

these results, we observe that the contiguity heuristic works effectively in practice, while the

linearity heuristic may face difficulty in some scenarios.

Greedy performed comparably to the model-based methods in instances 1 and 2 but poorly

in the remaining instances. As this method only relies on the mean of distributions, problems

like instances 3, 4, and 5 with heavy-tailed distributions that could lead to an unrefinable plan

within a deadline can deceive Greedy, underscoring a major limitation of this method.

PPO and Round Robin performed equally poorly. PPO required 104 trials to train the model,

which is quite extensive, to achieve this performance. Its computation time was insignificant, as

it only required time for the forward pass of the neural network at each time step. While the
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model-free variant has its value in handling data acquisition issues, dealing with sparse rewards

in the presence of deadline constraints remains a significant challenge, left for future work.

Contrary to expectations, Round Robin performed well in instances 3 and 5, likely due to

the small number of plan skeletons and deadlines used in the comparison analysis. However, in

subsequent analyses involving larger plan skeletons and deadlines in example domains, Round

Robin did not succeed even once.

C. Computation time analysis

As metareasoning trades off between solution quality and computation time, better solution

quality can be achieved with more computation time. Since the model-free approach inherently

differs from the model-based approach by requiring short computation time at the expense of a

large number of problem-solving trials, we compare MCTS and DP Rerun for this analysis. The

more computation time used for MCTS, the closer its solution approaches the optimal solution

that can be obtained by solving the MDP exactly.

Figure 4 shows the total computation times spent solving the five problem instances used

in Section VIII-B. It can be observed that MCTS required greater computation time to find

good-quality solutions, while DP Rerun needed negligible computation time to find comparable

solutions, demonstrating the dramatic increase in efficiency achieved by the heuristics.

In Figure 5, we compare the performance, measured by cumulative rewards over 100 runs,

between MCTS and DP Rerun. Both methods are given the same computation time, which is set

equal to DP Rerun’s computation time. This analysis evaluates the solution quality when both

methods are constrained by fixed computation time. The significant degradation in MCTS’s per-

formance can be observed, emphasizing DP Rerun’s ability to maintain reasonable performance

even with approximations.

We additionally evaluate the performance of MCTS by varying the computation time across

100 runs of five problem instances. Since each problem instance requires different computation

times to find high-quality solutions, we use the logarithm of the computation time multiplier.

This multiplier can be applied to compute the actual computation time in seconds for each

environment by multiplying a base computation time for DP Rerun with ten raised to the power

of the multiplier value. The base computation times for DP Rerun for each instance are 1.11×

10−5, 1.26× 10−5, 2.07× 10−5, 1.27× 10−5, 2.12× 10−5. More importantly, we can empirically
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Fig. 4: Total computation time comparison between MCTS and DP Rerun.

observe the fundamental trade-off in metareasoning, where more computation time leads to better

solution quality, in this MCTS performance analysis.

D. Evaluation on example domains

We present the comparison analysis of all the methods in the example domains introduced in

Section VII. Histograms of planning time and execution time for all actions in both the navigation

and manipulation domains are provided in Appendix C. The performance is again measured by

the 95% confidence interval of the return over 100 runs. The total decision-making time step D

is set to 22 for navigation and 40 for manipulation. Like Section VIII-B, we provided sufficient

computation time for all methods to perform at their best.

Table II shows the performance results of all methods. In both domains, DP Rerun performed
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Fig. 5: Performance comparison between MCTS and DP Rerun when both methods are given

the same computation time.

the best, followed by DP and Greedy. The improved performances of DP and Greedy compared

to those in the five instances are attributed to the tails of distributions not being heavy enough to

reduce the probability of plans becoming unrefinable within a deadline, thereby increasing their

success rates. Unlike the previous comparison analysis, MCTS performed poorly. This dramatic

decrease in performance was due to insufficient computation time, even though it was given

significantly more time compared to other methods, averaging 21 seconds for navigation and

45 seconds for manipulation. This result underscores the real complexity of the NP-hard effort

allocation problem in large-scale scenarios. PPO was again trained with 104 trials, performing

well in navigation but poorly in manipulation due to the large deadline and action space associated
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Fig. 6: Performance analysis of MCTS with varying compuation time.

with a greater number of plan skeletons.

IX. CONCLUSION AND FUTURE WORK

This work addresses deadline-aware TAMP problems with the objective of finding a fully

executable plan from a set of abstract plans without violating a pre-specified deadline constraint.

A metareasoning approach is proposed by formulating an MDP to find optimal effort allocation

among abstract plans. Since solving the MDP is proven to be NP-hard, we propose several

approximation schemes and further explore a model-free approach that does not require learning

the distributions. The proposed methods, particularly DP Rerun, show promising results com-

pared to baselines in terms of the cumulative reward related to solution quality and computation

time.
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Navigation domain

Algorithm MCTS DP DP Rerun PPO Round Robin Greedy

Cumulative reward 0.25± 0.08 0.43± 0.09 0.48± 0.09 0.42± 0.09 0.0± 0.0 0.43± 0.09

Manipulation domain

Algorithm MCTS DP DP Rerun PPO Round Robin Greedy

Cumulative reward 0.15± 0.07 0.47± 0.09 0.53± 0.09 0.10± 0.06 0.0± 0.0 0.48± 0.09

TABLE II: Performance comparison among algorithms in two example scenarios.

As the proposed effort allocation problem introduces a deadline constraint for the first time,

this work opens up new avenues for future research. We present several directions that are

promising for tackling more complex scenarios and practical applications.

Our TAMP approach can be classified as a sequence-before-satisfy approach introduced in

Section II, where abstract plans composed of a sequence of abstract actions are first found,

followed by their refinement to create executable low-level motions. If the refinement of any

abstract action fails, backtracking is commonly employed to revert to the previously computed

low-level motions of the previous abstract action and attempt to find alternative low-level motions.

However, the current MDP formulation does not allow for backtracking. If we achieve this

capability, then we can expect the effort allocation strategy to effectively handle TAMP problems

that may include many infeasible plans where no low-level motions exist.

Another important future direction is to consider various environments where the quantity,

class, and shape of objects may vary, instead of a fixed environment. This approach requires

representing planning time and execution time distributions that are generalizable to different

environments. Generative models may be employed to learn these distributions, which can be

conditioned on environment-specific features.

Taking into account exogenous processes in deadline-aware TAMP would allow for addressing

a richer class of problems. For example, consider a scenario where one of the abstract actions

involves standing in line to grab a coffee, but the waiting time is uncertain. Exogenous processes

model uncertain events such as this uncertain waiting time, providing additional sources of

uncertainty besides planning and execution times.

The long-term vision of this work is to create scalable, adaptive methods for solving TAMP
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problems under deadline constraints. As we continue to refine our approach, integrating learning-

based methods for generalizing across environments and handling more complex scenarios will be

crucial in making deadline-aware TAMP a reliable tool for a wide range of robotic applications.
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[69] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for solving sequential

manipulation planning problems,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2014, pp. 3684–3691.

[70] M. Helmert, “The fast downward planning system,” Journal of Artificial Intelligence

Research, vol. 26, pp. 191–246, 2006.

[71] D. Speck, R. Mattmüller, and B. Nebel, “Symbolic top-k planning,” in Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 34, no. 06, 2020, pp. 9967–9974.

[72] T. Ren, G. Chalvatzaki, and J. Peters, “Extended tree search for robot task and motion

planning,” arXiv preprint arXiv:2103.05456, 2021.

[73] B. Marthi, S. Russell, and J. A. Wolfe, “Angelic semantics for high-level actions.” in ICAPS,

2007, pp. 232–239.

[74] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory of

NP-completeness. W. H. Freeman and Co., 1979, p. 190.

[75] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,

S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of monte carlo tree search

methods,” IEEE Transactions on Computational Intelligence and AI in games, vol. 4, no. 1,

pp. 1–43, 2012.
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APPENDIX A

PLAN SKELETONS FOR THE MANIPULATION DOMAIN

We show the details of the plan skeletons for the manipulation domain. As numerous actions

are involved in this domain, we combine move and pick, as well as move and place, into

single abstract actions for simplicity.

• σ1 =
(
δ11 = move + pick(o1 = B1), δ21 = move + place(o1 = B1, of = R1), δ31 =

move+ pick(o2 = B2), δ41 = move+ place(o2 = B2, of = R2)
)
,

• σ2 =
(
δ12 = move + pick(o1 = B1), δ22 = move + place(o1 = B1, of = R1), δ32 =

move + pick(o6 = B6), δ42 = move + place(o6 = B6, of = C2), δ52 = move +

pick(o2 = B2), δ62 = move+ place(o2 = B2, of = R2)
)
,

• σ3 =
(
δ13 = move + pick(o1 = B1), δ23 = move + place(o1 = B1, of = R1), δ33 =

move + pick(o5 = B5), δ43 = move + place(o5 = B5, of = C2), δ53 = move +

pick(o2 = B2), δ63 = move+ place(o2 = B2, of = R2)
)
,

• σ4 =
(
δ14 = move + pick(o1 = B1), δ24 = move + place(o1 = B1, of = R1), δ34 =

move + pick(o5 = B5), δ44 = move + place(o5 = B5, of = C2), δ54 = move +

pick(o6 = B6), δ64 = move + place(o6 = B6, of = C2), δ74 = move + pick(o2 =

B2), δ84 = move+ place(o2 = B2, of = R2)
)
,

• σ5 =
(
δ15 = move + pick(o3 = B3), δ25 = move + place(o3 = B3, of = C1), δ35 =

move + pick(o4 = B4), δ45 = move + place(o4 = B4, of = C1), δ55 = move +

pick(o1 = B1), δ65 = move + place(o1 = B1, of = R1), δ75 = move + pick(o2 =

B2), δ85 = move+ place(o2 = B2, of = R2)
)
,
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• σ6 =
(
δ16 = move + pick(o3 = B3), δ26 = move + place(o3 = B3, of = C1), δ36 =

move + pick(o4 = B4), δ46 = move + place(o4 = B4, of = C1), δ56 = move +

pick(o1 = B1), δ66 = move + place(o1 = B1, of = R1), δ76 = move + pick(o6 =

B6), δ86 = move + place(o6 = B6, of = C2), δ96 = move + pick(o2 = B2), δ106 =

move+ place(o2 = B2, of = R2)
)
,

• σ7 =
(
δ17 = move + pick(o3 = B3), δ27 = move + place(o3 = B3, of = C1), δ37 =

move + pick(o4 = B4), δ47 = move + place(o4 = B4, of = C1), δ57 = move +

pick(o1 = B1), δ67 = move + place(o1 = B1, of = R1), δ77 = move + pick(o5 =

B5), δ87 = move + place(o5 = B5, of = C2), δ97 = move + pick(o2 = B2), δ107 =

move+ place(o2 = B2, of = R2)
)
,

• σ8 =
(
δ18 = move + pick(o3 = B3), δ28 = move + place(o3 = B3, of = C1), δ38 =

move + pick(o4 = B4), δ48 = move + place(o4 = B4, of = C1), δ58 = move +

pick(o1 = B1), δ68 = move + place(o1 = B1, of = R1), δ78 = move + pick(o5 =

B5), δ88 = move + place(o5 = B5, of = C2), δ98 = move + pick(o6 = B6), δ108 =

move + place(o6 = B6, of = C2), δ118 = move + pick(o2 = B2), δ128 = move +

place(o2 = B2, of = R2)
)
.

APPENDIX B

NETWORK ARCHITECTURE AND HYPERPARAMETER DETAILS FOR PPO

Two fully-connected neural networks are used separately for the actor and critic, each com-

prising three hidden layers of 64 neurons connected by Tanh activations.

The following lists the hyperparameter values we set for the experiments:

• Clipping parameter: 0.2,

• Gamma parameter (discount factor): 0.99,

• Actor learning rate: 0.0003,

• Critic learning rate: 0.001,

• Maximum time steps per episode: 1,000,

• Number of epochs at each iteration: 80,

• Time steps per epoch: 4,000.
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APPENDIX C

A COLLECTION OF HISTOGRAMS FOR PLANNING AND EXECUTION TIMES

We present a collection of histograms for planning and execution times for all examples and

experiments, each based on 1,000 trials.

Due to space limitations, the histograms are provided at the following link: https://drive.google.

com/file/d/1BPQeLd7E3QvLuwr7tyvoKnak3ClhQa91/view?usp=sharing

https://drive.google.com/file/d/1BPQeLd7E3QvLuwr7tyvoKnak3ClhQa91/view?usp=sharing
https://drive.google.com/file/d/1BPQeLd7E3QvLuwr7tyvoKnak3ClhQa91/view?usp=sharing
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